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ABSTRACT 
 
This study explores the impact of kinematic and physiological factors on middle-distance running 
performance to optimize training strategies. Six runners participated in experiments with three pacing 
patterns (F-S, Even, and S-F), monitored using a drone, camera, and tracking technology. VO2master 
measured oxygen uptake, and post-race PBLa and RPE were assessed. Results showed that the Even 
pattern had the lowest speed variation and most consistent trajectory. The running distances for the three 
pacing patterns were similar: F-S (807.30 ± 0.88 m), Even (806.52 ± 0.66 m), and S-F (806.37 ± 1.63 m). 
Although the Even strategy required less work, the F-S pattern had lower oxygen uptake, indicating higher 
efficiency. Heart rate and oxygen uptake stabilized fastest in the Even pattern, while the F-S pattern led to 
the lowest blood lactate (15.0 ± 2.56 mmol/L). The Even pacing is optimal for consistent performance, while 
F-S may optimize energy efficiency. This study emphasizes tailoring pacing strategies to an athlete’s profile, 
suggesting further research on personalized pacing to enhance performance. 
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INTRODUCTION 
 
The primary objective of pacing studies is to determine an optimal strategy that ensures both the physiological 
well-being of athletes and exceptional race results. However, various external factors affect performance, 
and the human body’s involvement in sports is highly complex. Consequently, the search for an ideal pacing 
strategy is still in its early stages, focusing primarily on energy metabolism and the assessment of pace 
adjustments that can better harness physiological functions. Traditionally, pace analysis in middle- and long-
distance running has relied on manual video tracking, where speed is evaluated at 100 m intervals (Matsuo 
et al., 1992; Enomoto et al., 2005,2006; Kadono et al.2008; Yang & Enomoto, 2022a,b). However, this 
method is labour-intensive, time-consuming, and does not provide a comprehensive race analysis, making it 
inefficient for modern sports performance evaluation. As a result, there has been a shift towards automatic 
video analysis, which integrates image processing, machine learning, and artificial intelligence (Sheng et al., 
2020; Wang et al., 2019). This approach has found widespread applications in technical analysis, athlete 
tracking, and video monitoring. 
 
Advancements in video-based detection and tracking methods have revolutionized sports analysis, enabling 
more accurate and faster assessments of competition processes. Traditionally, sports training relied heavily 
on subjective and empirical teaching methods, with coaches observing athletes' technical movements using 
the naked eye. While this provided useful insights, it was limited in accuracy and consistency. Moreover, the 
use of sensors for movement detection added unnecessary burdens on athletes and impacted their 
competitiveness (Ghasemzade & Jafari, 2010; Sheng et al., 2020). Laboratory-based measurements also 
fell short, as exercise machines could not fully replicate natural movements, and outdoor conditions were 
difficult to simulate. 
 
With the rise of computer vision technology, non-contact human motion analysis has become possible, 
allowing for more practical and accurate assessments of athletic performance. Athlete tracking and 
recognition through video-based object detection and tracking have gained attention, especially with the 
growing interest in integrating digital video technology into sports training (Dearden et al., 2006; Xing et al., 
2010; Lu et al., 2013; Manafifard et al., 2017). Although there has been extensive research on sports like 
basketball, football, volleyball, and swimming (Dearden et al., 2006; Xing et al., 2010; Lu et al., 2013; 
Manafifard et al., 2017; Victor et al., 2017; Suzuki et al., 2020), limited work has been done on track and field 
athletes. The application of drone-based technology and automatic analysis presents unique challenges in 
track and field events. Middle-distance races cover large areas, and the athletes are relatively small in scale, 
making accurate tracking difficult. However, overcoming these challenges is crucial for advancing 
performance analysis in middle-distance running. Drone technology, combined with advanced computer 
vision techniques like OpenCV, offers promising solutions for tracking middle-distance runners, determining 
their actual running distance, and analysing their pacing patterns in real-time. 
 
In middle-distance running, athletes do not maintain a constant pace throughout the race. Instead, they adjust 
their speed based on external conditions, physiological factors, and psychological states. These adjustments 
lead to the formation of specific pacing patterns, which are critical to race performance. Pacing behaviours 
among elite athletes vary depending on the event and the individual (Casado et al., 2021). Even small 
variations in pacing among top runners can have a significant impact on race outcomes (De Koning et al., 
1999). Previous studies have focused on analysing performance in relation to pacing strategies, particularly 
on the benefits of fast-start (F-S) pacing strategies (Ariyoshi et al., 1979; Jones et al., 2008). The way in 
which athletes distribute their energy expenditure during a race can influence factors such as the contribution 
from oxidative and non-oxidative metabolic pathways, fatigue development, and ultimately, race performance 
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itself (Foster et al., 1994). However, relatively few studies have explored how specific pacing strategies 
directly influence performance, especially in real-world track settings. 
 
Most past research on middle-distance pacing has been confined to laboratory settings or single pacing 
pattern studies on the track. This study proposes a more dynamic approach by utilizing drone technology to 
capture race videos of middle-distance runners, followed by automatic video analysis using OpenCV. By 
tracking runners in real-time, this method can calculate their actual coordinates, running distance, and speed 
with higher precision. The integration of drone-based tracking in this study aims to provide a more detailed 
understanding of pacing patterns and their impact on performance. Tracking middle-distance runners using 
drone footage offers valuable insights into pacing strategies and performance analysis. This study addresses 
the limitations of traditional manual analysis by leveraging advanced video-based detection methods, 
enabling more accurate and efficient performance assessments. By investigating multiple pacing patterns 
and their physiological and biomechanical effects, this research contributes to the growing body of knowledge 
on optimal pacing strategies in middle-distance running. 
 
METHODOLOGY 
 
Participants 
Six healthy male endurance athletes (1500 m runners) [20.5 ± 0.76 years; 1.74 ± 0.06 m in height; Weight: 
62.1 ± 8.23 kg; Body fat percentage (%):9.32 ± 2.16; Resting blood lactate concentration (BLa): 1.5 ± 
0.31mmol/L; Maximal oxygen uptake:62.07 ± 1.62ml/kg/min; Maximum heart rate:186.67 ± 5.34bpm; 
Personal best record for running 1500 m(PB): 239.99 ± 5.14 s] volunteered and gave written informed 
consent to participate in this study. This study was approved by the University of Tsukuba ethics committee 

(体023-104). All participants were professional middle-distance runners at the University of Tsukuba (see 

Table 1 for details). 
 
Table 1. Characteristics of participants. 

No. 
Age 

(year) 
Height 

(m) 
Weight 

(kg) 
Body fat percentage 

(%) 
Bla 

(mmol/L) 
𝐕̇𝐎2max 

(ml/kg/min) 

Hrmax 
(bpm) 

PB1500 
(s) 

1 20 1.60 49.7 6.4 1.3 62.3 183 240.50 
2 22 1.80 62.9 8.7 1.5 58.9 190 240.74 
3 20 1.73 58.5 9.0 1.1 63.4 180 238.65 
4 20 1.80 63.9 9.6 1.2 61.2 195 240.20 
5 21 1.81 77.3 13.6 2.0 63.4 182 231.09 
6 20 1.72 60.0 8.6 1.7 63.2 190 248.74 

Mean 20.50 1.74 62.10 9.32 1.47 62.07 186.67 239.99 
SD 0.76 0.07 8.23 2.16 0.31 1.62 5.34 5.14 

 
Experimental design 
This experiment was conducted on a standard 400 m track and field ground, with each athlete completing 
three 800 m pace runs (Pace is determined based on their 1500 m running speed.). Prior to the experiment, 
athletes received a detailed explanation of the procedures and were required to sign a consent form indicating 
their agreement and understanding of the experimental procedures. Three patterns of pace were set: Fast-
Slow pacing pattern (F-S: The first 400 m is fast, and the last 400 m is slow), Even pacing pattern, and Slow-
Fast pacing pattern (S-F: The first 400 m is slow, and the last 400 m is fast), with speed controlled by 
transmitting sound every 50 m. Running speeds were determined in consultation with the athletes, and the 
order of the runs was randomized. During the runs, athletes were equipped with a portable expired gas 
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analyser (VO2master MW-1100, Canada) to measure dynamic oxygen uptake changes during exercise. A 
Polar heart rate sensor (H10, Finland) to monitor heart rate fluctuations. After each run, the lactate value was 
measured, and the RPE value (rate of perceived exertion) was recorded. Peak blood lactate concentration 
(PBLa) was measured using fingertip blood collection (Lactate Pro 2; Japan; measurement range 0.5-25.0 
mmol/L; measurement time 15 seconds). Blood collection occurred at 1, 3, and 5-minute intervals after the 
race until the runner's blood lactate concentration began to decrease. The interval between test runs was at 
least 30 minutes, with lactate testing conducted before each test run. We decided that the lactate 
concentration should be less than 4 mmol/L before the next test run. Athletes' feedback was considered, and 
if they felt able, they proceeded with the next test run even if the lactate concentration was over 4 mmol/L. At 
the same time, we recorded all the test runs on video. To track the coordinates of the runners and calculate 
the actual distance and real-time changing speed of the run, we used a drone (MAVIC3-CLASSIC, DJI, 
China) to capture the motion process of all contestants (4K,29.97fps). The drone flight was authorized by 

Japan's Ministry of Land, Infrastructure, Transport and Tourism (東空運航第27987号), as well as the 

University of Tsukuba (第23.24号). Additionally, a single digital video camera (HC-VX908M, Panasonic, 

Japan) was positioned at the top of a building beside the track, with panning to follow the runners. The camera 
recorded at a speed of 59.94 fps, saving the footage in MP4 format. We marked the track every 50 m in 
advance. The frame size was analysed by video analysis software to calculate the elapsed time and average 
running speed at 50 m sections (Figure 1). 
 

 
 

Figure 1. Drone and camera photography diagram. 
 
Tracking algorithm, coordinate calibration and data calculation and processing 
In this study, we utilized the Correlation Single-Object Tracking (CSRT) algorithm to track runners in drone 
footage. The CSRT tracker was chosen due to its high accuracy and its capability to track small targets in 
high-definition videos. It demonstrated strong performance across various target types, motion patterns, and 
image backgrounds. The CSRT algorithm operates by using a template to represent the target being tracked. 
In each frame, the tracker applies correlation filtering to identify regions matching the template and 
determines the best-matching region as the target's current position. The template is updated dynamically to 
reflect changes in the target's appearance. The CSRT algorithm employs a discriminative correlation filter 
framework, designed to distinguish between the target object and the background. In previous work, we 
successfully tracked 1500 m runners during a competition (Yang et al., 2023). We enhanced the original 
algorithm to improve tracking performance and accurately output image coordinates. Figure 2 demonstrates 
the tracking results. 
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Figure 2. Structure of the object tracking method. 
 

 
 

Figure 3. The effect of detecting and tracking a runner from drone video, and Image points for calibration. 
 
For image calibration, we surveyed the track and field grounds prior to the running to determine precise 
coordinates. AutoCAD was employed to draft the track layout and measure coordinates (Yang et al., 2023). 
The track was a standard 400 m oval with eight lanes. The two semicircles had a radius of 37.9 m, while the 
straight sections measured 80 m in length and 75.8 m in width. The outer edge of the starting line for lane 
eight of the 110 m hurdles served as the origin point (0, 0) (Figure 3). For image-to-actual coordinate 
calibration, we selected 13 specific points on the track (shown in Table 2, Figure 3) and applied the Direct 
Linear Transformation (DLT) method to align the image coordinates with real-world coordinates. Regarding 
the calculation of position coordinates, the 2D DLT method (Walton, 1981) was employed. This technique 
establishes the relationship between image coordinates and real-world coordinates, allowing for accurate 
positioning of points on a 2D plane from camera images. The process involves two key steps: (1) calibration 
using multiple reference points (with known positions) to determine the camera's internal and external 
parameters, and (2) coordinate transformation, wherein DLT equations are constructed based on the 2D pixel 
coordinates of the reference points and their corresponding real-world coordinates. The DLT equations are 
then solved to derive transformation coefficients (DLT coefficients), which are subsequently used to calculate 
the 2D coordinates of unknown points on the image (Walton, 1981; Abdel-Aziz et al., 2015). 
 
To reduce noise in the data, we first reduced the video frame rate from 29.97 fps to 14.99 fps, followed by 
data smoothing. To further refine the accuracy of the tracked data, we applied a Butterworth low-pass filter 
(MATLAB) with a cutoff frequency of 3 Hz to remove high-frequency noise (Winter et al., 1974). With this 
precise correction of coordinates, we accurately calculated the athletes' running distances and speeds, 
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providing reliable measurements. This comprehensive approach significantly improves both the accuracy of 
the tracking system and the quality of data analysis in sports performance research. 
 
Table 2. Corresponding points between image and actual coordinates. 

Points 
Actual points Image points 

X-coordinate Y-coordinate X-coordinate Y-coordinate 

1 110 9.76 2678 1928 
2 147.77 44.54 3444 1202 
3 129.2 80.3 3105 432 
4 110 85.56 2723 301 
5 80 85.56 2080 268 
6 40 85.56 1424 250 
7 30 85.56 1010 250 
8 -7.9 48.07 275 1027 
9 -2.8 28.68 357 1427 
10 20.2 11.08 778 1823 
11 30 9.76 968 1865 
12 60 9.76 1595 1909 
13 100 9.76 2461 1930 

Note. The table illustrates the calibration of coordinate points for a video capturing a runner finishing a race. While the actual 
coordinates remain fixed, the image coordinates need to be extracted from each captured video frame. 

 
Calculation of running speed and distance 
To calculate the actual running distance, we used the following formula (Equation 1), based on the calibrated 
coordinates: 
 

D = √(xn − xn−1)2 + (yn − yn−1)2 ...................... (Equation 1) 

 
Here, D represents the distance between two points, and xn and yn are the coordinates at different times n 
and n-1. 
 
The runner’s speed can be calculated using the following formula (Equation 2): 
 

v = √vx
2 + vy

2 …................................................. (Equation 2) 

Where: 
vx = (xn − xn−1) ∗ 14.99fps, 

v𝑦 = (yn − yn−1) ∗ 14.99fps. 

 
In this calculation: vx and vy represent the horizontal and vertical speed components, respectively. 
 
v is the total speed of the runner. By using these equations, we can accurately measure both the distance 
covered and the speed of the runner in each video frame. 
 
Using kinetic energy to calculate power. We can use kinetic energy divided by time to calculate instantaneous 
power. Power is defined as the rate at which energy changes over time, and the rate of change in kinetic 
energy can represent power. 
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To calculate instantaneous power, over a short time interval, we can use the change in kinetic energy: 
 

𝑃 =
𝛥𝐾𝐸

𝛥𝑡
=

1

2
𝑚(𝑣𝑓

2−𝑣𝑖
2)

𝛥𝑡
..........................................(Equation 3) 

Where: 
P is the power; ΔKE is the change in kinetic energy; Δt is the time interval; v f is the velocity at the end of the 
time interval; vi is the velocity at the beginning of the time interval. 
 
For n speeds, the total speed variation Δv, calculated using the absolute values of all adjacent speed 
changes, can be expressed as: 
 

Δ𝑣 = ∑ |𝑣𝑖+1 − 𝑣𝑖|
𝑛−1
𝑖=1 ...................................... (Equation 4) 

 
Here, v1, v2,…,vn are the n speeds. This formula represents the sum of the absolute values of the differences 
between each pair of adjacent speeds. 
 
Statistical analysis 
This study used SPSS and Excel for statistical analysis. Results are presented as mean ± standard deviation 
(±SD). The Shapiro-Wilk test was used to assess normality, and homogeneity of variance was tested. For 
data meeting normality and homogeneity assumptions, one-way ANOVA was conducted, followed by LSD 
post hoc tests if significant differences (p < .05) were found. For non-normal data or unequal variances, the 
Mann-Whitney U test was applied. The significance level was set at .05. 
 
RESULTS 
 
Figure 4 shows the image coordinates (top, black lines) obtained from tracking the videos of a runner during 
three different-paced 800 m runs (Fast-Slow: F-S; Even; Slow-Fast: S-F) taken by a drone and the actual 
tracking coordinates (bottom, grey lines) calibrated from the image coordinates. We output the image 
coordinates of the six runners, calibrated these coordinates, and then obtained the actual running coordinates 
of the runners. This allowed us to calculate their running speed and distance. In our calculations of the 
coordinates output after tracking six runners, we found the distances for three different 800 m pacing patterns 
to be as follows: the F-S pacing pattern at 807.30 ± 0.88 m, the Even pacing pattern at 806.52 ± 0.66 m, and 
the S-F pacing pattern at 806.37 ± 1.63 m, with the distance for the F-S pattern being slightly shorter (Table 
3). However, there were no significant differences in distances among the three pacing patterns. Therefore, 
regardless of the pacing pattern, the distance run by the runners is almost equal in the absence of special 
circumstances. 
 
Table 3. Actual distance covered by runners at different paces after object tracking. 

Runners F-S(m) Even(m) S-F(m) 

1 807.46 805.30 806.31 
2 807.71 807.42 804.73 
3 808.36 806.64 806.66 
4 808.02 806.93 803.99 
5 806.09 806.66 808.70 
6 806.14 806.17 807.83 

Mean 807.30 806.52 806.37 
SD 0.88 0.66 1.63 

Note. No significant difference in all groups. 
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Figure 4. Tracked image coordinates of a runner (top) and actual tracked coordinates after calibration from 
the image coordinates (bottom). (The dotted lines represent the inner edge of the playground). 
 

 
 

Figure 5. Changes in speed after tracking the six runners. 
 
By tracking middle-distance runners, we can output their coordinates and subsequently calculate all speed 
variations. Figure 5 shows the speeds calculated from the actual coordinates of six runners after tracking 
their three different pacing patterns. It is evident that after an initial acceleration of 2 seconds, the speed 
variations display three distinct pacing patterns: F-S, Even, and S-F. In terms of acceleration, the initial 
acceleration of the F-S pacing pattern is significantly higher than that of the Even and S-F pacing patterns, 
with the F-S pacing pattern quick start pattern showing obvious acceleration deceleration. Conversely, in the 
S-F pacing pattern among the six runners, the acceleration of five of them is slower than that of the F-S and 
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Even pacing patterns. This change in acceleration and the momentary variation in speed during motion 
cannot be detected using traditional manual video analysis methods. 
 
Table 4 presents the calculated total speed variations after tracking the six runners. In order to exclude the 
impact of acceleration and deceleration at the beginning and end on the overall data, we excluded the first 
50 m and the last 50 m of the race. Among the different pacing patterns observed, the F-S pacing pattern 
exhibits the highest average total speed variation. The average values of the total speed variation for the 
Even (7.13 ± 0.54) and S-F (7.13 ± 0.72) pacing patterns are nearly identical. There is no significant 
difference in total speed variation among the three pacing patterns observed across the six runners. 
 
Table 4. Total speed variation Δv for runners. 

Runners F-S Even S-F 

1 8.41 7.29 7.12 
2 8.18 6.75 5.87 
3 6.43 8.00 6.52 
4 6.08 6.28 7.70 
5 7.55 7.03 7.67 
6 7.09 7.43 7.87 

Mean 7.29 7.13 7.13 
SD 0.85 0.54 0.72 

Note. No significant difference in all groups. In order to reduce the impact of acceleration and deceleration at the beginning and 
end of the race, we excluded the first 50 m and the last 50 m of data. 

 
As per the work-energy theorem, the work done is equivalent to the change in kinetic energy. Table 5 shows 
that the Even pacing pattern required the least work, followed by the F-S pacing pattern, while the S-F pacing 
pattern required the most. Although the differences were not statistically significant, this trend suggests that 
the Even pacing pattern may help conserve energy and improve endurance and efficiency during a race. 
 
Table 5. Total work calculated based on changes in running speed during the race. 

Runners F-S Even S-F 

MW 4.408×103 4.414×103 3.900×103 
MN 4.979×103 4.212×103 3.776×103 
KN 4.497×103 4.521×103 4.929×103 
FM 5.308×103 6.190×103 7.092×103 
FN 5100×103 5.052×103 4779×103 
FS 4.487×103 4.142×103 4.501×103 

Mean 4.797×103 4.755×103 4.830×103 
SD 347.21 705.98 1096.58 

Note. Based on the work-energy theorem, work equals the change in kinetic energy.no significant difference in all groups. 

 

Moreover, depending on the running speed, the dynamics of heart rate (HR) and oxygen uptake (V̇O2) during 

the running process also differ. Figure 6 illustrates the dynamic changes in speed, HR, and V̇O2 across 
different sections under various running pacing patterns. It is evident that as the initial speed accelerates, HR 

and V̇O2 in any pacing pattern exhibit an upward trend before stabilizing. Analysing the HR changes across 
the three different pacing patterns, the HR rise slope after acceleration is steeper for both the F-S and S-F 
pacing patterns, while it is relatively smaller for the Even pacing pattern. After HR stabilizes and until the end 
of the race, the HR of the F-S and S-F pacing patterns remains higher than that of the Even pacing pattern. 
During running, there was no significant difference in HR between each pacing pattern. 
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Figure 6. Changes in running speed, HR, and V̇O2 across different sections in three pacing patterns. 
 
Additionally, when analysing the runners' PBLa, RPE, and race times, Table 5 shows that the F-S pacing 
pattern had the lowest PBLa (15.0 ± 2.56 mmol/L), while the S-F pacing pattern had the highest (15.9 ± 1.86 
mmol/L), with the Even pacing pattern in between (15.2 ± 2.01 mmol/L). There were no significant differences 
in PBLa values among the three patterns. For RPE, the F-S pacing pattern had the highest average, though 
again, there were no significant differences between the three patterns. Four out of six participants found the 
F-S pacing pattern the most uncomfortable, while two found the Even pacing pattern uncomfortable, 
suggesting that the F-S pacing pattern has a stronger psychological impact. The average RPE scores were 
around 16 for all pacing strategies. The average race times were 130.00 ± 1.96 s for F-S, 130.71 ± 1.93 s 
for Even, and 129.68 ± 1.49 s for S-F, with no significant differences in times. Interestingly, although the 
runners completed the same distance in almost the same time across the three pacing strategies, their 
metabolic responses and psychological perceptions differed slightly, despite no significant differences 
between the pace patterns. 
 
Table 6. The peak blood lactate, RPE and race time after different paces. 

No. 
PBLa(mmol/L) RPE Race time(s) 

F-S Even S-F F-S Even S-F F-S Even S-F 

1 15.5 17.8 18.5 14 17 17 127.79 129.50 129.01 
2 15.4 15.7 16.5 18 17 17 131.87 130.53 130.11 
3 12.8 12.9 12.5 17 17 15 132.30 134.08 131.72 
4 11.3 12.9 15.1 15 17 17 128.19 128.66 127.71 
5 15.5 14.2 15.8 17 15 16 128.16 129.10 128.23 
6 19.5 17.6 17.1 17 14 15 131.66 132.37 131.30 

Mean 15.0 15.2 15.9 16.3 16.2 16.2 130.00 130.71 129.68 
SD 2.56 2.01 1.86 1.37 1.21 0.90 1.96 1.93 1.49 

Note. No significant difference in all groups. 

 
DISCUSSION 
 
Traditionally, analysing middle-distance running competitions involves manually reviewing videos to calculate 
speeds over each 100 m segment (Matsuo et al., 1992; Enomoto et al., 2005,2006; Kadono et al.2008; Yang 
& Enomoto, 2022a,b). However, this process is time-consuming and doesn’t offer a complete performance 
analysis. While athletes can wear sensors to track their movements more accurately, this adds extra strain 
and can affect their performance (Ghasemzade & Jafari, 2010; Sheng et al., 2020). Additionally, lab-based 
measurements are limited as fitness equipment cannot fully replicate outdoor conditions or natural 
movement. Video-based detection and tracking offer a faster and more precise way to analyse races. With 
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the advancement of artificial intelligence, we can now perform this complex task using deep learning. Based 
on object detection, recognition, and tracking, we have developed a new method for video analysis  and 
validated the feasibility of this method (Yang et al.,2023).In this study, we use a target detection algorithm to 
measure athletes' instantaneous speeds (Figure 5) and calculate their actual running distance (Table 3), 
introducing a more efficient method for performance analysis in middle-distance running competitions. 
 
Figure 7 illustrates the interval speed (50m) from object tracking and manual video analysis for different 
runners in various pacing patterns. The black lines represent the interval speed from object tracking, while 
the grey lines indicate the interval speed from manual video analysis. A comparison of the speeds from object 
tracking and manual video analysis for all runners shows no significant difference between the two methods 
across different pacing patterns. Our previous research (Yang et al., 2023) also found no significant difference 
between the speeds from object tracking and manual video analysis when tracking a 1500 m race. Thus, 
object tracking proves to be effective in analysing speed in middle-distance running, and it can serve as a 
new method for performance analysis in such races. In addition, a larger total speed variation indicates 
greater speed fluctuation. Among the different pacing patterns, the Even pacing pattern showed a more 
stable running speed. However, there was no significant difference between the three pacing patterns (Table 
4). Maintaining a stable speed may help reduce energy loss caused by excessive speed changes. 
 

 
 
Figure 7. Average interval speed from object tracking and manual video analysis for runners with different 
pacing patterns. 
 
Jones & Whipp (2002) noted that competition strategies and techniques can lead to runners covering different 
distances during a race. In their study on 800 m and 5000 m events, they found that athletes ran varying 
actual distances, which impacted performance. For example, in the Olympic men's 800 m final, Germany’s 
Schumann won with a time of 1:45.08, running 802 m by staying close to the kerb, while Denmark’s Kipketer, 
who finished second in 1:45.14, ran 813 m due to using lanes 2 and 3. Tracking athletes to measure their 
actual distance and pace is crucial for performance improvement. While formulas can estimate running 
distances, advancements in AI now allow us to track athletes using object tracking technology, providing 
more precise data on the distances covered. In our previous research, we tracked 1500 m runners during a 
race (Yang et al., 2023). The study also showed that when a runner completes an 800 m run alone, the actual 
distance covered remains nearly the same, regardless of different pacing strategies, with no significant 
differences observed between the three paces (Table 3). However, in real competitions, runners may cover 
greater distances due to overtaking and shifting into outer lanes. Consequently, overtaking or running in outer 
lanes can increase the total distance, highlighting the impact of race tactics on middle-distance performance. 
Running techniques and tactical decisions play a key role in influencing middle-distance running 
performance. 
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Ariyoshi et al. (1979) were among the first to analyse three pacing patterns during a 1400 m treadmill run: 
Fast-Slow (F-S), Slow-Fast (S-F), and Even pacing. Their study emphasized the significance of the F-S 
pacing pattern in middle-distance running. However, as their experiments were conducted on a treadmill, 
their results may not fully reflect track performance, a limitation supported by subsequent studies on oxygen 
uptake in running (Spencer et al., 1996; Draper & Wood, 2005; Hanon et al., 2002; Thomas et al., 2005). To 
address this, our study conducted pace interventions on an actual track to simulate realistic conditions. Figure 
8 illustrates the oxygen uptake patterns for runners under different pacing strategies. The F-S pacing pattern 
showed the smallest oxygen uptake area, followed by the Even pacing pattern, and then the S-F pacing 
pattern. While differences in oxygen uptake values among patterns were not statistically significant, the F-S 
pacing pattern demonstrated higher efficiency by minimizing energy cost. Effective pacing should optimize 
oxygen uptake without leading to excessive anaerobic metabolism. Hanon et al. (2007) noted that an overly 
fast start could be detrimental and recommended an initial speed below 115% of vV̇O2max for no longer than 
25–30 s. They proposed a pacing strategy that combines a fast but controlled start, energy conservation 
during the middle phase, and acceleration in the final 300 m. Similarly, Jones et al. (2008) modelled pacing 
strategies and found Fast Start (FS) to be the most effective in reducing oxygen deficits, although this 
conclusion was based on theoretical research. Our findings further validated the effectiveness of the F-S 
pacing pattern in real-world conditions but emphasized tailoring pacing to individual athletes' characteristics. 
In terms of V̇O2 dynamics, as shown in Figure 8, the F-S pacing pattern exhibits a slow start in oxygen uptake 
and a relatively low overall oxygen uptake during the race. 
 
Additionally, Table 6 shows that the post-race PBLa, RPE, and race time values indicate that the F-S pacing 
pattern has the lowest PBLa (15.0 ± 2.56 mmol/L), while the S-F pacing pattern shows the highest PBLa 
(15.9 ± 1.86 mmol/L). The Even pacing pattern falls in between (15.2 ± 2.01 mmol/L). However, there were 
no significant differences in PBLa values among the three pacing patterns. From these observations, it can 
be inferred that in the F-S pacing pattern, runners accelerate rapidly at the beginning of the race, requiring a 
high energy output over a short period. During this phase, aerobic energy supply is delayed, and energy is 
primarily derived from anaerobic sources such as the ATP-PC system and glycolysis. The lower oxygen 
uptake at the start likely reflects the inability of the aerobic system to immediately provide sufficient oxygen, 
suggesting that anaerobic metabolism plays a significant role during this period. Furthermore, while the low 
lactate concentration might initially appear to indicate a limited contribution of anaerobic metabolism, it is 
possible that the F-S pacing pattern's strategy—reaching top speed quickly and then reducing pace—helps 
suppress overall energy expenditure. This efficiency may prevent excessive activation of glycolysis and the 
resulting accumulation of lactate. 
 

 
 

Figure 8. Dynamic changes in oxygen uptake across 50 m sections for three pacing patterns. 
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CONCLUSIONS 
 
The objective of this study is to advance the understanding of how kinematic and physiological factors 
influence middle-distance running performance, with the goal of providing practical guidance for optimizing 
training strategies and improving athletic outcomes. This study investigated the physiological and kinematic 
effects of different pacing strategies in middle distance runners through experimental interventions on the 
track. The key findings are as follows: 
 
Object tracking and kinematic analysis 
The runners' speed changes and movement trajectories were tracked, showing that the Even pacing pattern 
had the lowest average total speed variation. The calculated distances for the three 800 m pacing patterns 
were: F-S (807.30 ± 0.88 m), Even (806.52 ± 0.66 m), and S-F (806.37 ± 1.63 m), with no statistically 
significant differences among them. The Even pacing pattern required the least work, followed by the F-S 
pacing pattern, while the S-F pacing pattern required the most, though these differences were not statistically 
significant. 
 
Pacing and physiological metrics analysis 
The F-S pacing pattern demonstrated lower oxygen uptake compared to the Even and S-F pacing patterns, 
indicating its efficiency in minimizing energy costs. Additionally, heart rate (HR) and oxygen uptake (V̇O2) 
stabilized more rapidly under the Even pacing pattern, while the F-S pattern resulted in the lowest post-race 
blood lactate concentration (15.0 ± 2.56 mmol/L), despite no statistically significant differences across 
strategies. The F-S pacing pattern showed lower oxygen uptake, underscoring its efficiency in minimizing 
energy costs. While the Even pacing pattern demonstrated more consistent speed control, all strategies 
exhibited significant energy expenditure during the initial phase due to rapid kinetic energy increases. The 
Even pacing strategy appears more suitable for maintaining consistent performance, while the F-S pacing 
pattern is advantageous for optimizing energy efficiency and oxygen utilization in competitive contexts. 
 
This study bridges theoretical research and practical application, emphasizing the importance of personalized 
pacing strategies based on an athlete's physiological and kinematic profile. Future research should explore 
individual variations in response to pacing strategies, focusing on optimizing performance through tailored 
interventions. This work contributes to advancing middle-distance running analysis and lays a foundation for 
innovative approaches in training and competition. 
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