Study of the effect of FTO gene polymorphisms on physical performance indicators and the response to weight loss programs in obese athletes after a period of cessation of training

Main Article Content

Saif Rasheed Ghanim
https://orcid.org/0009-0002-2536-4049
Ammar Faris Atiyah
https://orcid.org/0009-0009-9216-2659
Ahmed Mahmood Mahdi
https://orcid.org/0009-0005-9142-3539
AlSeddiq Oday Latof
https://orcid.org/0009-0009-1733-8095

Abstract

Introduction. Polymorphisms in the fat mass and obesity-associated (FTO) gene, particularly the A allele, are associated with obesity and may reduce responsiveness to exercise programs. Investigating their effect on physical performance and weight loss in obese athletes after training cessation is important for tailoring effective interventions. Aim of Study. To examine the influence of FTO gene polymorphisms on physical performance indicators and weight loss outcomes in obese athletes following an 8–12-week structured training program after a period of inactivity. Material and Methods. Thirty obese Iraqi athletes (20–50 years) were genotyped for the FTO rs9939609 variant (AA, AT, TT) using PCR. Baseline and post-program assessments included body weight, BMI, body fat percentage, VO2max, muscle strength, flexibility, and cardiac recovery rate. The training combined aerobic, resistance, flexibility, and balance exercises. Data were analysed using ANOVA with post hoc tests (p < .05). Results. TT genotype carriers had the greatest reductions in weight (−4.5 kg) and body fat percentage (−4.8%), and the largest improvements in VO2max (+5.3 ml/kg/min), muscle strength (+4.6 kg), flexibility (+3.5 cm), and recovery rate (−12 bpm). AA genotype carriers showed the least improvement across all measures. Conclusions. FTO gene polymorphisms were associated with differential responses to weight loss and performance improvements, with TT carriers exhibiting the most favourable adaptations. Inco (Hashim et al., 2024, pp. 684-692) prorating genetic testing into training design may support the development of more individualized and potentially more effective exercise programs, particularly for individuals carrying the A allele. In practical terms, coaches and clinicians might consider adjusting training intensity and nutrition plans for A-allele carriers, focusing on enhancing metabolic flexibility and satiety signalling. The study was approved by the Research Ethics Committee of the University of Samarra, and all participants gave informed consent.

Downloads

Download data is not yet available.

Article Details

Section

Sport Medicine, Nutrition & Health

Author Biographies

Saif Rasheed Ghanim, Samarra University

College of Physical Education and Sports Sciences.

Ammar Faris Atiyah, Samarra University

College of Physical Education and Sports Sciences.

Ahmed Mahmood Mahdi, Samarra University

College of Physical Education and Sports Sciences.

AlSeddiq Oday Latof, Tikrit University

College of Physical Education and Sports Sciences.

How to Cite

Rasheed Ghanim, S. ., Faris Atiyah, A., Mahmood Mahdi, A., & Oday Latof, A. (2026). Study of the effect of FTO gene polymorphisms on physical performance indicators and the response to weight loss programs in obese athletes after a period of cessation of training. Journal of Human Sport and Exercise , 21(2), 490-502. https://doi.org/10.55860/dacvfy75

References

Al Daghri, N. M., Alkharfy, K. M., Al Attas, O. S., Krishnaswamy, S., Mohammed, A. K., Albagha, O. M., Alenad, A. M., Chrousos, G. P., & Alokail, M. S. (2014). Association between type 2 diabetes mellitus related SNP variants and obesity traits in a Saudi population. Molecular Biology Reports, 41(3), 1731-1740. https://doi.org/10.1007/s11033-014-3022-z

Andreasen, C. H., Stender-Petersen, K. L., Mogensen, M. S., Torekov, S. S., Wegner, L., Andersen, G., Nielsen, A. L., Albrechtsen, A., Borch-Johnsen, K., Rasmussen, S. S., Clausen, J. O., Sandbæk, A., Lauritzen, T., Hansen, L., Jørgensen, T., Pedersen, O., & Hansen, T. (2008). Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation. Diabetes, 57(1), 95-101. https://doi.org/10.2337/db07-0910

Arendas, K., Qiu, Q., & Gruslin, A. (2008). Obesity in pregnancy: Pre-conceptional to postpartum consequences. Journal of Obstetrics and Gynaecology Canada, 30(6), 477-488. https://doi.org/10.1016/S1701-2163(16)32863-8

Choi, H. K., Atkinson, K., Karlson, E. W., & Curhan, G. (2005). Obesity, weight change, hypertension, diuretic use, and risk of gout in men. Archives of Internal Medicine, 165(7), 742-748. https://doi.org/10.1001/archinte.165.7.742

Claussnitzer, M., Dankel, S. N., Kim, K. H., Quon, G., Meuleman, W., Haugen, C., Glunk, V., Sousa, I. S., Beaudry, J. L., Puviindran, V., Abdennur, N. A., Liu, J., Svensson, P. A., Hsu, Y. H., Drucker, D. J., Mellgren, G., Hui, C. C., Hauner, H., & Kellis, M. (2015). FTO obesity variant circuitry and adipocyte browning in humans. The New England Journal of Medicine, 373(10), 895-907. https://doi.org/10.1056/NEJMoa1502214

Farooqi, I. S. (2006). Genetics of obesity in humans. Endocrine Reviews, 27(7), 710-718. https://doi.org/10.1210/er.2006-0040

Flynn, M. A., McNeil, D. A., Maloff, B., Mutasingwa, D., Wu, M., Ford, C., & Tough, S. C. (2006). Reducing obesity and related chronic disease risk in children and youth: A synthesis of evidence. Obesity Reviews, 7(Suppl. 1), 7-66. https://doi.org/10.1111/j.1467-789X.2006.00242.x

Hiraike, Y., Yang, C. T., Liu, W. J., Yamada, T., & Lee, C. L. (2021). FTO obesity variant-exercise interaction on changes in body weight and BMI: The Taiwan Biobank study. Journal of Clinical Endocrinology & Metabolism, 106(9), e3673-e3681. https://doi.org/10.1210/clinem/dgab295

Howard, M., Natasha, J., Taylor, A., Gill, T., & Chittleborough, C. (2008). Severe obesity: Socio-demographics within extremes of BMI. Obesity Research & Clinical Practice, 2(1), 51-59. https://doi.org/10.1016/j.orcp.2008.01.001

Kim, J. Y., DeMenna, J. T., Puppala, S., Chittoor, G., Schneider, J., Duggirala, R., Mandarino, L. J., Shaibi, G. Q., & Coletta, D. K. (2016). Physical activity and FTO genotype influence on obesity. BMC Genetics, 17, Article 89. https://doi.org/10.1186/s12863-016-0357-6

Leońska-Duniec, A., Jastrzębski, Z., Zarębska, A., Maciejewska, A., Ficek, K., & Cięszczyk, P. (2018). Interaction between FTO polymorphism and physical activity on obesity traits. Journal of Sport and Health Science, 7(4), 459-464. https://doi.org/10.1016/j.jshs.2016.08.013

Manson, J. E., Willett, W. C., Stampfer, M. J., Colditz, G. A., Hunter, D. J., Hankinson, S. E., Hennekens, C. H., & Speizer, F. E. (1995). Body weight and mortality among women. The New England Journal of Medicine, 333(11), 677-685. https://doi.org/10.1056/NEJM199509143331101

Mitchell, J. A., Church, T. S., Rankinen, T., Earnest, C. P., Sui, X., & Blair, S. N. (2010). FTO genotype and weight loss benefits of moderate exercise. Obesity, 18(3), 641-643. https://doi.org/10.1038/oby.2009.311

Morton, G. J., Cummings, D. E., Baskin, D. G., Barsh, G. S., & Schwartz, M. W. (2006). Central nervous system control of food intake and body weight. Nature, 443(7109), 289-295. https://doi.org/10.1038/nature05026

Neovius, K., Johansson, K., Kark, M., & Neovius, M. (2009). Obesity status and sick leave: A systematic review. Obesity Reviews, 10(1), 17-27. https://doi.org/10.1111/j.1467-789X.2008.00521.x

Organisation for Economic Co-operation and Development. (2012). Obesity update 2012. Retrieved from [Accessed 2026, 10 February]: https://www.oecd.org/health/fitnotfat

Ponce-González, J. G., Martínez-Ávila, Á., Velázquez-Díaz, D., Perez-Bey, A., Gómez-Gallego, F., Marín-Galindo, A., Corral-Pérez, J., & Casals, C. (2023). Impact of the FTO gene variation on appetite and fat oxidation. Nutrients, 15(9), 2037. https://doi.org/10.3390/nu15092037

Rahimi, M. R., & Symonds, M. E. (2025). Effect of FTO genotype on training- and diet-induced weight loss. Critical Reviews in Food Science and Nutrition, 65(21), 4080-4096. https://doi.org/10.1080/10408398.2024.2382346

Rankinen, T., Rice, T., Teran-Garcia, M., Rao, D. C., & Bouchard, C. (2010). FTO genotype and exercise-induced body composition changes. Obesity, 18, 322-326. https://doi.org/10.1038/oby.2009.205

Tsigos, C., Hainer, V., Basdevant, A., Finer, N., Fried, M., Mathus-Vliegen, E., Micic, D., Maislos, M., Roman, G., Schutz, Y., Toplak, H., Zahorska-Markiewicz, B., & Obesity Management Task Force of the European Association for the Study of Obesity. (2008). Management of obesity in adults: European clinical practice guidelines. Obesity Facts, 1(2), 106-116. https://doi.org/10.1159/000126822

Van Baal, P. H., Polder, J. J., de Wit, G. A., Hoogenveen, R. T., Feenstra, T. L., Boshuizen, H. C., Engelfriet, P. M., & Brouwer, W. B. (2008). Lifetime medical costs of obesity: Prevention no cure for increasing health expenditure. PLoS Medicine, 5(2), e29. https://doi.org/10.1371/journal.pmed.0050029

Walley, A. J., Asher, J. E., & Froguel, P. (2009). The genetic contribution to non-syndromic human obesity. Nature Reviews Genetics, 10(7), 431-442. https://doi.org/10.1038/nrg2594

World Health Organization. (2000). Obesity: Preventing and managing the global epidemic (WHO Technical Report Series No. 894). World Health Organization. Retrieved from [Accessed 2026, 10 February]: https://iris.who.int/handle/10665/42330

Yanagiya, T., Tanabe, A., Iida, A., Saito, S., Sekine, A., Takahashi, A., Tsunoda, T., Kamohara, S., Nakata, Y., Kotani, K., Komatsu, R., Itoh, N., Mineo, I., Wada, J., Masuzaki, H., Yoneda, M., Nakajima, A., Miyazaki, S., Tokunaga, K., & Hotta, K. (2007). Association of single-nucleotide polymorphisms in MTMR9 gene with obesity. Human Molecular Genetics, 16(24), 3017-3026. https://doi.org/10.1093/hmg/ddm260

Similar Articles

You may also start an advanced similarity search for this article.