The impact of a 6-week strength training program on physiological and hematological metrics in elite Ethiopian middle- to long-distance runners

Main Article Content

Nigatu Worku Angasu
Zeru Bekele Tola
https://orcid.org/0000-0001-5425-3837
Aschenaki Taddese
https://orcid.org/0000-0003-3207-1164

Abstract

This study examined the effects of a 6-week strength training (StT) program on elite middle- to long-distance runners (1,500m–10,000m). While strength training is recognized for improving athletic performance, its specific impact on physiological and haematological parameters in Ethiopia remains unclear. Twenty-one elite athletes underwent pre- and post-training assessments, measuring resting heart rate (RHR), maximal oxygen consumption (VO2max), 5000m race time, 400m speed, and haematological markers, including red blood cell (RBC) count, white blood cell (WBC) count, haemoglobin (Hb), and haematocrit (Hct). Results showed that 5000m performance significantly improved (p < .001), demonstrating the positive effect of StT on endurance. Regression and ANOVA analyses revealed strong predictive relationships for VO2max (R² = 0.304, p = .010), 5000m time (R² = 0.719, p < .001), 400m speed (R² = 0.784, p < .001), and Hct levels (R² = 0.894, p < .001). No significant changes were found in RBC, WBC, or Hb levels. These findings suggest strength training enhances endurance performance without significantly affecting haematological parameters, emphasizing the need for further research on long-term haematological adaptations. This research contributes valuable insights into the effectiveness of strength training interventions for enhancing athletic performance.

Downloads

Download data is not yet available.

Article Details

Section

Performance Analysis of Sport

Author Biographies

Nigatu Worku Angasu, Addis Ababa University

Department of Sports Science.

Zeru Bekele Tola , Addis Ababa University

Department of Sports Science.

Aschenaki Taddese, Addis Ababa University

Department of Sports Science.

How to Cite

Worku Angasu, N., Bekele Tola , Z. ., & Taddese, A. . (2025). The impact of a 6-week strength training program on physiological and hematological metrics in elite Ethiopian middle- to long-distance runners. Journal of Human Sport and Exercise , 20(3), 808-820. https://doi.org/10.55860/kqe3k378

References

Aagaard, P., & Andersen, J. (2010). Effects of strength training on endurance capacity in top-level endurance athletes. Scand. J. Med. Sci. Sports, 20(Suppl 2), 39-47. https://doi.org/10.1111/j.1600-0838.2010.01197.x

Ahmadizad, S., & El-Sayed, M. S. (2005). The acute effects of resistance exercise on the main determinants of blood rheology. J. Sports Sci., 23(3), 243-249. https://doi.org/10.1080/02640410410001730151

Albracht, K., & Arampatzis, A. (2013). Exercise-induced changes in triceps surae tendon stiffness and muscle strength affect running economy in humans. Eur. J. Appl. Physiol., 113, 1605-1615. https://doi.org/10.1007/s00421-012-2585-4

Alcaraz-Ibañez, M., & Rodríguez-Pérez, M. (2018). Effects of resistance training on performance in previously trained endurance runners: A systematic review. J. Sports Sci., 36(6), 613-629. https://doi.org/10.1080/02640414.2017.1326618

Barnes, K. R., & Kilding, A. E. (2015). Strategies to improve running economy. Sports Med., 45(1), 37-56. https://doi.org/10.1007/s40279-014-0246-y

Bassett, D. R., & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc., 32(1), 70-84. https://doi.org/10.1097/00005768-200001000-00012

Best, A. W. (2021). Why does strength training improve endurance performance? Am. J. Hum. Biol., 33(6), e23526. https://doi.org/10.1002/ajhb.23526

Blagrove, R. C., Howatson, G., & Hayes, P. R. (2018). Effects of strength training on the physiological determinants of middle-and long-distance running performance: A systematic review. Sports Med., 48, 1117-1149. https://doi.org/10.1007/s40279-017-0835-7

Boullosa, D., Esteve-Lanao, J., Casado, A., Peyré-Tartaruga, L. A., Gomes da Rosa, R., & Del Coso, J. (2020). Factors affecting training and physical performance in recreational endurance runners. Sports, 8(3), 35. https://doi.org/10.3390/sports8030035

Chen, B., Wu, Z., Huang, X., Li, Z., Wu, Q., & Chen, Z. (2023). Effect of altitude training on the aerobic capacity of athletes: A systematic review and meta-analysis. Heliyon, 9(9), e20188. https://doi.org/10.1016/j.heliyon.2023.e20188

Coutts, A. J., Wallace, L. K., & Slattery, K. M. (2007). Monitoring changes in performance, physiology, biochemistry, and psychology during overreaching and recovery in triathletes. Int. J. Sports Med., 28(2), 125-134. https://doi.org/10.1055/s-2006-924146

Gäbler, M., Prieske, O., Hortobágyi, T., & Granacher, U. (2018). The effects of concurrent strength and endurance training on physical fitness and athletic performance in youth: A systematic review and meta-analysis. Front. Physiol., 9, 1057. https://doi.org/10.3389/fphys.2018.01057

Gill, D. L., Williams, L., & Reifsteck, E. J. (2017). Psychological dynamics of sport and exercise. Human Kinetics. https://doi.org/10.5040/9781492595779

Iaia, F. M., & Bangsbo, J. (2010). Speed endurance training is a powerful stimulus for physiological adaptations and performance improvements of athletes. Scand. J. Med. Sci. Sports, 20(Suppl 2), 11-23. https://doi.org/10.1111/j.1600-0838.2010.01193.x

Ives, R. W., Du, Y., Etter, D. M., & Welch, T. B. (2005). A multidisciplinary approach to biometrics. IEEE Trans. Educ., 48(3), 462-471. https://doi.org/10.1109/TE.2005.849750

Koç, H., Özen, G., Abanoz, H., & Pulur, A. (2018). Comparative analysis of hematological parameters in well-trained athletes and untrained men. Pedagog. Psychol. Med.-Biol. Probl. Phys. Train. Sports, 5, 260-264. https://doi.org/10.15561/18189172.2018.0506

Liao, K.-F., Nassis, G., Bishop, C., Yang, W., Bian, C., & Li, Y.-M. (2022). Effects of unilateral vs. bilateral resistance training interventions on measures of strength, jump, linear and change of direction speed: A systematic review and meta-analysis. Biol. Sport, 39(3), 485-497. https://doi.org/10.5114/biolsport.2022.107024

Mandić, M. (2022). Blood volume expansion following supramaximal exercise - Occurrence and contribution to maximal oxygen uptake. Karolinska Institutet (Sweden).

Midgley, A. W., McNaughton, L. R., & Jones, A. M. (2007). Training to enhance the physiological determinants of long-distance running performance: Can valid recommendations be given to runners and coaches based on current scientific knowledge? Sports Med., 37(10), 857-880. https://doi.org/10.2165/00007256-200737100-00003

Montero, D., Breenfeldt-Andersen, A., Oberholzer, L., Haider, T., Goetze, J. P., Meinild-Lundby, A.-K., & Lundby, C. (2017). Erythropoiesis with endurance training: Dynamics and mechanisms. Am. J. Physiol.-Regul. Integr. Comp. Physiol., 312(6), R894-R902. https://doi.org/10.1152/ajpregu.00012.2017

Mujika, I., Bourdillon, N., Zelenkova, I., Vergnoux, F., & Millet, G. P. (2024). Hematological and performance adaptations to altitude training (2,320 m) in elite middle-distance and distance swimmers. Front. Physiol., 15. https://doi.org/10.3389/fphys.2024.1474479

Nieman, D. C., & Pence, B. D. (2020). Exercise immunology: Future directions. J. Sport Health Sci., 9(5), 432-445. https://doi.org/10.1016/j.jshs.2019.12.003

Nybo, L., Sundstrup, E., Jakobsen, M. D., Mohr, M., Hornstrup, T., Simonsen, L., et al. (2010). High-intensity training versus traditional exercise interventions for promoting health. Med. Sci. Sports Exerc., 42(10), 1951-1958. https://doi.org/10.1249/MSS.0b013e3181d99203

Parmar, A., Jones, T. W., & Hayes, R. P. (2021). The dose-response relationship between interval-training and VO2max in well-trained endurance runners: A systematic review. J. Sports Sci., 39(12), 1410-1427. https://doi.org/10.1080/02640414.2021.1876313

Prieto-González, P., & Sedlacek, J. (2022). Effects of running-specific strength training, endurance training, and concurrent training on recreational endurance athletes' performance and selected anthropometric parameters. Int. J. Environ. Res. Public Health, 19(17), 10773. https://doi.org/10.3390/ijerph191710773

Rodríguez Zamora, L. (2013). Physiological responses and competitive performance in elite synchronized swimming. Retrieved from [Accessed 2025, April 21]: https://www.tdx.cat/bitstream/handle/10803/289616/LRZ_PhD_THESIS.pdf?sequence=1&isAllowed=y

Saunders, P. U., Pyne, D. B., Telford, R. D., & Hawley, J. A. (2004). Factors affecting running economy in trained distance runners. Sports Med., 34(7), 465-485. https://doi.org/10.2165/00007256-200434070-00005

Schumacher, Y. O., Schmid, A., G., D., Bültermann, D., & B., A. (2002). Hematological indices and iron status in athletes of various sports and performances. Med. Sci. Sports Exerc., 34(5), 869-875. https://doi.org/10.1097/00005768-200205000-00022

Sheykhlouvand, M., Gharaat, M., Khalili, E., Agha-Alinejad, H., Rahmaninia, F., & Arazi, H. (2018). Low-volume high-intensity interval versus continuous endurance training: Effects on hematological and cardiorespiratory system adaptations in professional canoe polo athletes. J. Strength Cond. Res., 32(7), 1852-1860. https://doi.org/10.1519/JSC.0000000000002112

Siddique, U., Rahman, S., Frazer, A. K., Pearce, A. J., Howatson, G., & Kidgell, D. J. (2020). Determining the sites of neural adaptations to resistance training: A systematic review and meta-analysis. Sports Med., 50, 1107-1128. https://doi.org/10.1007/s40279-020-01258-z

Sindall, P. (2020). Physiological determinants of endurance performance: Maximal oxygen uptake (VO2max). A Comprehensive Guide to Sports Physiology and Injury Management: An Interdisciplinary Approach, 137. https://doi.org/10.1016/B978-0-7020-7489-9.00012-0

Sitkowski, D., Klusiewicz, A., Pokrywka, A., Jankowski, W., & Malczewska-Lenczowska, J. (2023). Relationships between changes in hematological adaptations and exercise capacity in Olympic rowers after a period of reduced training loads. J. Hum. Kinet., 86, 155. https://doi.org/10.5114/jhk/159463

Škarabot, J., Brownstein, C. G., Casolo, A., Del Vecchio, A., & Ansdell, P. (2021). The knowns and unknowns of neural adaptations to resistance training. Eur. J. Appl. Physiol., 121, 675-685. https://doi.org/10.1007/s00421-020-04567-3

Steiner, T., Maier, T., & Wehrlin, J. P. (2019). Effect of endurance training on hemoglobin mass and VO2max in male adolescent athletes. Med. Sci. Sports Exerc., 51(5), 912. https://doi.org/10.1249/MSS.0000000000001867

Thompson, M. A. (2017). Physiological and biomechanical mechanisms of distance-specific human running performance. Integr. Comp. Biol., 57(2), 293-300. https://doi.org/10.1093/icb/icx069

Tomschi, F., Bloch, W., & Grau, M. (2018). Impact of type of sport, gender and age on red blood cell deformability of elite athletes. Int. J. Sports Med., 40(1), 12-20. https://doi.org/10.1055/s-0043-119879

Wang, G., Durussel, J., Shurlock, J., Mooses, M., Fuku, N., Bruinvels, G., et al. (2017). Validation of whole-blood transcriptome signature during microdose recombinant human erythropoietin (rHuEpo) administration. BMC Genomics, 18, 67-80. https://doi.org/10.1186/s12864-017-4191-7

Zacháry, D., Filep, T., Jakab, G., Ringer, M., Balázs, R., Németh, T., & Szalai, Z. (2023). The effect of mineral composition on soil organic matter turnover in temperate forest soils. J. Soils Sediments, 23(3), 1389-1402. https://doi.org/10.1007/s11368-022-03393-8

Similar Articles

You may also start an advanced similarity search for this article.