Emerging sports science technologies in decoding and preventing joint injuries A new era for athletics in China and Asia

Main Article Content

Shuang Xiao
https://orcid.org/0009-0009-4840-4913
Junjie Liu
https://orcid.org/0009-0000-9333-4154

Abstract

Sports injuries are a major issue for all athletes, but joint injuries particularly so for athletes in the rigorous sport of athletics, whose very sustainability depends on the sustainability of athletes. New sports science technologies are turning joint injuries into a transparent box problem with new understanding of their causes and new efficacy in preventing them. In this article, we review the state of the art in sports science technologies such as wearable sensors, artificial intelligence, computer vision and biomechanical modelling which work together to decode the micro-mechanics of joint damage. With an application and current research perspective centred around China and Asia, this article addresses the challenges remaining in these technologies including data integration, accessibility of technology, and development of intervention solutions tailored to individuals. Through the discussion of representative case studies, this review highlights how these new technologies enable personalised and precise joint management for improved injury prevention and rehabilitation. This review aims to drive the development of an intelligent prevention ecosystem which can not only improve the performance of Asian athletes but also protect their musculoskeletal health in the new era of sports medicine and athletics training.

Downloads

Download data is not yet available.

Article Details

Section

Review Paper

Author Biographies

Shuang Xiao, China Three Gorges University

School of Basic Medicine.

Junjie Liu, China Three Gorges University

School of Basic Medicine.

How to Cite

Xiao, S. (2025). Emerging sports science technologies in decoding and preventing joint injuries: A new era for athletics in China and Asia (J. Liu , Trans.). Journal of Human Sport and Exercise , 21(2), 407-423. https://doi.org/10.55860/c2mnt942

References

Aghaeeaval, M., Bendahan, N., Shivji, Z., McInnis, C., Jamzad, A., Lomax, L. B., Shukla, G., Mousavi, P., & Winston, G. P. (2021). Prediction of patient survival following postanoxic coma using EEG data and clinical features. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 997-1000. https://doi.org/10.1109/EMBC46164.2021.9629946

Ajalik, R. E., Alenchery, R. G., Cognetti, J. S., Zhang, V. Z., McGrath, J. L., Miller, B. L., & Awad, H. A. (2022). Human Organ-on-a-Chip Microphysiological Systems to Model Musculoskeletal Pathologies and Accelerate Therapeutic Discovery. Front Bioeng Biotechnol, 10, 846230. https://doi.org/10.3389/fbioe.2022.846230

Arauz, P. G., Garcia, G., & Llerena, J. (2024). Biomechanical analysis of the snatch technique for elite and varsity weightlifters. J Biomech, 175, 112291. https://doi.org/10.1016/j.jbiomech.2024.112291

Arredondo-Soto, M., García-Murillo, M. A., Vidal-Lesso, A., Jesús Cervantes-Sánchez, J., & Moreno, H. A. (2021). A Novel Kinematic Model of the Tibiofemoral Joint Based on a Parallel Mechanism. J Biomech Eng, 143(6). https://doi.org/10.1115/1.4050034

Avci, O., & Röhrle, O. (2024). Determining a musculoskeletal system's pre-stretched state using continuum-mechanical forward modelling and joint range optimization. Biomech Model Mechanobiol, 23(3), 1031-1053. https://doi.org/10.1007/s10237-024-01821-x

Ayala, A. E., Khwaja, A., Goodison, B. C., Smith, S. L., Kim, S. Y., Irwin, J. T., & Latt, L. D. (2024). Effect of Fibular Malrotation on Tibiotalar Joint Contact Mechanics in a Weber B Ankle Fracture Model. Foot Ankle Spec, 17(6), 577-584. https://doi.org/10.1177/19386400221127835

Bedard, T. A., Johnson, C. K., Amendola, R. L., Scuderi, M. G., Ordway, N. R., Werner, F. W., & Cannizzaro, J. P. (2025). A biomechanical analysis of four medial patellofemoral ligament reconstruction techniques. Clin Biomech (Bristol), 122, 106401. https://doi.org/10.1016/j.clinbiomech.2024.106401

Bender, J. L., Flora, P. K., Milosevic, E., Soheilipour, S., Maharaj, N., Dirlea, M., Parvin, L., Matthew, A., & Kazanjian, A. (2021). Training prostate cancer survivors and caregivers to be peer navigators: a blended online/in-person competency-based training program. Support Care Cancer, 29(3), 1235-1244. https://doi.org/10.1007/s00520-020-05586-8

Bini, S. A., Gillian, N., Peterson, T. A., Souza, R. B., Schultz, B., Mormul, W., Cichoń, M. K., Szczotka, A. B., & Poupyrev, I. (2025). Unlocking Gait Analysis Beyond the Gait Lab: High-Fidelity Replication of Knee Kinematics Using Inertial Motion Units and a Convolutional Neural Network. Arthroplast Today, 33, 101656. https://doi.org/10.1016/j.artd.2025.101656

Cai, D., Xiao, T., Zou, A., Mao, L., Chi, B., Wang, Y., Wang, Q., Ji, Y., & Sun, L. (2022). Predicting acute kidney injury risk in acute myocardial infarction patients: An artificial intelligence model using medical information mart for intensive care databases. Front Cardiovasc Med, 9, 964894. https://doi.org/10.3389/fcvm.2022.964894

Chang, J., Li, J., Ye, J., Zhang, B., Chen, J., Xia, Y., Lei, J., Carlson, T., Loureiro, R., Korsunsky, A. M., Tan, J. C., & Zhao, H. (2025). AI-Enabled Piezoelectric Wearable for Joint Torque Monitoring. Nanomicro Lett, 17(1), 247. https://doi.org/10.1007/s40820-025-01753-w

Chaumeil, A., Lahkar, B. K., Dumas, R., Muller, A., & Robert, T. (2024). Agreement between a markerless and a marker-based motion capture systems for balance related quantities. J Biomech, 165, 112018. https://doi.org/10.1016/j.jbiomech.2024.112018

Chen, T., Xu, D., Wang, M., Zhou, Z., Jie, T., Zhou, H., Yuan, Y., Baker, J. S., Gao, Z., & Gu, Y. (2025). Wearable monitoring for rehabilitation: Deep learning-driven vertical ground reaction force estimation for anterior cruciate ligament reconstruction. Clin Biomech (Bristol), 130, 106663. https://doi.org/10.1016/j.clinbiomech.2025.106663

Claudino, J. G., Capanema, D. O., de Souza, T. V., Serrão, J. C., Machado Pereira, A. C., & Nassis, G. P. (2019). Current Approaches to the Use of Artificial Intelligence for Injury Risk Assessment and Performance Prediction in Team Sports: a Systematic Review. Sports Med Open, 5(1), 28. https://doi.org/10.1186/s40798-019-0202-3

Cooper, D. J., Batt, M. E., O'Hanlon, M. S., & Palmer, D. (2021). A Cross-Sectional Study of Retired Great British Olympians (Berlin 1936-Sochi 2014): Olympic Career Injuries, Joint Health in Later Life, and Reasons for Retirement from Olympic Sport. Sports Med Open, 7(1), 54. https://doi.org/10.1186/s40798-021-00339-1

Crisafulli, D., Spataro, M., De Marchis, C., Risitano, G., & Milone, D. (2024). A New Sensorized Approach Based on a DeepLabCut Model and IR Thermography for Characterizing the Thermal Profile in Knees During Exercise. Sensors (Basel), 24(23). https://doi.org/10.3390/s24237862

Davidoviča, A., Davidovičs, S., Semjonova, G., Katashev, A., Oks, A., Lancere, L., Tomsone, S., & Zolovs, M. (2025). Correlation of Biomechanical Variables of Lower Extremity Movement During Functional Tests and Tasks in Youth League Football Players: Cross-Sectional Correlation Study. JMIR Form Res, 9, e69046. https://doi.org/10.2196/69046

Di Paolo, S., Lopomo, N. F., Della Villa, F., Paolini, G., Figari, G., Bragonzoni, L., Grassi, A., & Zaffagnini, S. (2021). Rehabilitation and Return to Sport Assessment after Anterior Cruciate Ligament Injury: Quantifying Joint Kinematics during Complex High-Speed Tasks through Wearable Sensors. Sensors (Basel), 21(7). https://doi.org/10.3390/s21072331

Gu, W., & Pandy, M. G. (2020). Direct Validation of Human Knee-Joint Contact Mechanics Derived From Subject-Specific Finite-Element Models of the Tibiofemoral and Patellofemoral Joints. J Biomech Eng, 142(7). https://doi.org/10.1115/1.4045594

Heneghan, N. R., Collacott, E., Martin, P., Spencer, S., & Rushton, A. (2021). Lumbosacral injuries in elite Paralympic athletes with limb deficiency: a retrospective analysis of patient records. BMJ Open Sport Exerc Med, 7(1), e001001. https://doi.org/10.1136/bmjsem-2020-001001

Heneghan, N. R., Heathcote, L., Martin, P., Spencer, S., & Rushton, A. (2020). Injury surveillance in elite Paralympic athletes with limb deficiency: a retrospective analysis of upper quadrant injuries. BMC Sports Sci Med Rehabil, 12, 36. https://doi.org/10.1186/s13102-020-00183-y

Hind, K., Konerth, N., Entwistle, I., Theadom, A., Lewis, G., King, D., Chazot, P., & Hume, P. (2020). Cumulative Sport-Related Injuries and Longer Term Impact in Retired Male Elite- and Amateur-Level Rugby Code Athletes and Non-contact Athletes: A Retrospective Study. Sports Med, 50(11), 2051-2061. https://doi.org/10.1007/s40279-020-01310-y

Jiang, Z., Hao, Y., Jin, N., & Li, Y. (2022). A Systematic Review of the Relationship between Workload and Injury Risk of Professional Male Soccer Players. Int J Environ Res Public Health, 19(20). https://doi.org/10.3390/ijerph192013237

Jiang, Z., & Shen, Y. (2025). Multimodal learning for enhanced SPECT/CT imaging in sports injury diagnosis. Front Physiol, 16, 1605426. https://doi.org/10.3389/fphys.2025.1605426

Jung, S., Zhou, M., Ma, J., Yang, R., Cramer, S. C., Dobkin, B. H., Yang, L. F., & Rosen, J. (2024). Wearable Body Sensors Integrated into a Virtual Reality Environment - A Modality for Automating the Rehabilitation of the Motor Control System. Annu Int Conf IEEE Eng Med Biol Soc, 2024, 1-4. https://doi.org/10.1109/EMBC53108.2024.10782207

Kanko, R. M., Laende, E. K., Strutzenberger, G., Brown, M., Selbie, W. S., DePaul, V., Scott, S. H., & Deluzio, K. J. (2021). Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system. J Biomech, 122, 110414. https://doi.org/10.1016/j.jbiomech.2021.110414

Kellis, E., Sahinis, C., & Baltzopoulos, V. (2023). Is hamstrings-to-quadriceps torque ratio useful for predicting anterior cruciate ligament and hamstring injuries? A systematic and critical review. J Sport Health Sci, 12(3), 343-358. https://doi.org/10.1016/j.jshs.2022.01.002

Khandan, A., Fathian, R., Carey, J. P., & Rouhani, H. (2022). Assessment of Three-Dimensional Kinematics of High- and Low-Calibre Hockey Skaters on Synthetic ice Using Wearable Sensors. Sensors (Basel), 23(1). https://doi.org/10.3390/s23010334

Lahkar, B. K., Muller, A., Dumas, R., Reveret, L., & Robert, T. (2022). Accuracy of a markerless motion capture system in estimating upper extremity kinematics during boxing. Front Sports Act Living, 4, 939980. https://doi.org/10.3389/fspor.2022.939980

Lambert, C., Ritzmann, R., Akoto, R., Lambert, M., Pfeiffer, T., Wolfarth, B., Lachmann, D., & Shafizadeh, S. (2022). Epidemiology of Injuries in Olympic Sports. Int J Sports Med, 43(5), 473-481. https://doi.org/10.1055/a-1641-0068

Lambert, C., Ritzmann, R., Akoto, R., Lambert, M., Pfeiffer, T., Wolfarth, B., Lachmann, D., & Shafizadeh, S. (2024). Epidemiology of Injuries in Olympic Sports. Sportverletz Sportschaden, 38(1), 18-26. https://doi.org/10.1055/a-2036-8166

Laupattarakasem, P., Cook, J. L., Stannard, J. P., Smith, P. A., Blecha, K. M., Guess, T. M., Sharp, R. L., & Leary, E. (2024). Using a Markerless Motion Capture System to Identify Preinjury Differences in Functional Assessments. J Knee Surg, 37(8), 570-576. https://doi.org/10.1055/s-0043-1772238

Lin, Y., Zhang, J., Ji, M., Li, X., Wang, D., Chen, L., & Ma, X. (2025). Automated rapid design method for personalized gradient pressure-relieving insoles. Proc Inst Mech Eng H, 239(9), 966-975. https://doi.org/10.1177/09544119251372338

Lloyd, D. G., Saxby, D. J., Pizzolato, C., Worsey, M., Diamond, L. E., Palipana, D., Bourne, M., de Sousa, A. C., Mannan, M. M. N., Nasseri, A., Perevoshchikova, N., Maharaj, J., Crossley, C., Quinn, A., Mulholland, K., Collings, T., Xia, Z., Cornish, B., Devaprakash, D., Barrett, R. S. (2023). Maintaining soldier musculoskeletal health using personalised digital humans, wearables and/or computer vision. J Sci Med Sport, 26 Suppl 1, S30-s39. https://doi.org/10.1016/j.jsams.2023.04.001

Lusi, S., Lacroix, M., Guerini, H., Campagna, R., Drapé, J. L., & Feydy, A. (2025). Shoulder Cuff Tears in Athletes: Magnetic Resonance Imaging Findings. Semin Musculoskelet Radiol, 29(3), 432-441. https://doi.org/10.1055/s-0045-1805076

Ma, M., Song, Q., & Liu, H. (2024). The effect of personalized orthopedic insoles on plantar pressure during running in subtle cavus foot. Front Bioeng Biotechnol, 12, 1343001. https://doi.org/10.3389/fbioe.2024.1343001

McCoy, J. A., Levine, L. D., Wan, G., Chivers, C., Teel, J., & La Cava, W. G. (2025). Intrapartum electronic fetal heart rate monitoring to predict acidemia at birth with the use of deep learning. Am J Obstet Gynecol, 232(1), 116.e111-116.e119. https://doi.org/10.1016/j.ajog.2024.04.022

Musat, C. L., Mereuta, C., Nechita, A., Tutunaru, D., Voipan, A. E., Voipan, D., Mereuta, E., Gurau, T. V., Gurău, G., & Nechita, L. C. (2024). Diagnostic Applications of AI in Sports: A Comprehensive Review of Injury Risk Prediction Methods. Diagnostics (Basel), 14(22). https://doi.org/10.3390/diagnostics14222516

Nishikawa, N., Watanabe, S., & Yamamoto, K. (2025). Comparison of kinematics between markerless and marker-based motion capture systems for change of direction maneuvers. J Biomech, 192, 112965. https://doi.org/10.1016/j.jbiomech.2025.112965

Nouman, M., Dissaneewate, T., Leelasamran, W., & Chatpun, S. (2019). The insole materials influence the plantar pressure distributions in diabetic foot with neuropathy during different walking activities. Gait Posture, 74, 154-161. https://doi.org/10.1016/j.gaitpost.2019.08.023

Patra, Y., Liu, Q., Chan, R. H. M., Thomson, D., Chow, D. H. K., Fuller, B., & Cheung, R. T. H. (2023). Tracking Bilateral Lower Limb Kinematics of Distance Runners on Treadmill Using a Single Inertial Measurement Unit. Annu Int Conf IEEE Eng Med Biol Soc, 2023, 1-4. https://doi.org/10.1109/EMBC40787.2023.10339970

Ptaszyk, O., Boutefnouchet, T., Cummins, G., Kim, J. M., & Ding, Z. (2025). Wearable Devices for the Quantitative Assessment of Knee Joint Function After Anterior Cruciate Ligament Injury or Reconstruction: A Scoping Review. Sensors (Basel), 25(18). https://doi.org/10.3390/s25185837

Sarin, J. K., Te Moller, N. C. R., Mohammadi, A., Prakash, M., Torniainen, J., Brommer, H., Nippolainen, E., Shaikh, R., Mäkelä, J. T. A., Korhonen, R. K., van Weeren, P. R., Afara, I. O., & Töyräs, J. (2021). Machine learning augmented near-infrared spectroscopy: In vivo follow-up of cartilage defects. Osteoarthritis Cartilage, 29(3), 423-432. https://doi.org/10.1016/j.joca.2020.12.007

Scataglini, S., Abts, E., Van Bocxlaer, C., Van den Bussche, M., Meletani, S., & Truijen, S. (2024). Accuracy, Validity, and Reliability of Markerless Camera-Based 3D Motion Capture Systems versus Marker-Based 3D Motion Capture Systems in Gait Analysis: A Systematic Review and Meta-Analysis. Sensors (Basel), 24(11). https://doi.org/10.3390/s24113686

Shiao, Y., Chen, G. Y., & Hoang, T. (2024). Three-Dimensional Human Posture Recognition by Extremity Angle Estimation with Minimal IMU Sensor. Sensors (Basel), 24(13). https://doi.org/10.3390/s24134306

Silveira, S. L., Froehlich-Grobe, K., & Motl, R. W. (2023). Formative evaluation of an exercise training program for persons with multiple sclerosis who are wheelchair users. Eval Program Plann, 97, 102243. https://doi.org/10.1016/j.evalprogplan.2023.102243

Suo, X., Tang, W., & Li, Z. (2024). Motion Capture Technology in Sports Scenarios: A Survey. Sensors (Basel), 24(9). https://doi.org/10.3390/s24092947

Taketomi, S., Kawaguchi, K., Mizutani, Y., Takei, S., Yamagami, R., Kono, K., Murakami, R., Arakawa, T., Kage, T., Kobayashi, T., Furukawa, Y., Arino, Y., Fujiwara, S., Tanaka, S., & Ogata, T. (2024). Intrinsic Risk Factors for Noncontact Anterior Cruciate Ligament Injury in Young Female Soccer Players: A Prospective Cohort Study. Am J Sports Med, 52(12), 2972-2979. https://doi.org/10.1177/03635465241278745

Taketomi, S., Kawaguchi, K., Mizutani, Y., Takei, S., Yamagami, R., Kono, K., Murakami, R., Kage, T., Arakawa, T., Fujiwara, S., Tanaka, S., & Ogata, T. (2024). Lower hamstring to quadriceps muscle strength ratio and lower body weight as factors associated with noncontact anterior cruciate ligament injury in male American football players: A prospective cohort study. Asia Pac J Sports Med Arthrosc Rehabil Technol, 35, 43-47. https://doi.org/10.1016/j.asmart.2023.11.006

Torvinen, P., Ruotsalainen, K. S., Zhao, S., Cronin, N., Ohtonen, O., & Linnamo, V. (2024). Evaluation of 3D Markerless Motion Capture System Accuracy during Skate Skiing on a Treadmill. Bioengineering (Basel), 11(2). https://doi.org/10.3390/bioengineering11020136

Uzuner, S., Li, L., Kucuk, S., & Memisoglu, K. (2020). Changes in Knee Joint Mechanics After Medial Meniscectomy Determined With a Poromechanical Model. J Biomech Eng, 142(10). https://doi.org/10.1115/1.4047343

van Loggerenberg, C., Ramagole, D. A., van Rensburg, A. J., van Rensburg, D. J., & Boer, P. (2025). Sports-related injuries and illnesses amongst adolescent athletes in an urban sports medicine practice setting: a one-year prospective study. S Afr J Sports Med, 37(1), v37i31a20756. https://doi.org/10.17159/2078-516X/2025/v37i1a20756

Wang, C., Du, W., Li, Z., & Chen, W. (2025). Effects of custom-made insole on the mechanical response characteristics of the foot during static standing and walking. Proc Inst Mech Eng H, 239(4), 360-369. https://doi.org/10.1177/09544119251328060

Wang, Y. T., Chen, J. C., & Lin, Y. S. (2020). Effects of Artificial Texture Insoles and Foot Arches on Improving Arch Collapse in Flat Feet. Sensors (Basel), 20(13). https://doi.org/10.3390/s20133667

Xu, R., Wang, Z., Ren, Z., Ma, T., Jia, Z., Fang, S., & Jin, H. (2019). Comparative Study of the Effects of Customized 3D printed insole and Prefabricated Insole on Plantar Pressure and Comfort in Patients with Symptomatic Flatfoot. Med Sci Monit, 25, 3510-3519. https://doi.org/10.12659/MSM.916975

Yu, L., Jiang, H., Mei, Q., Mohamad, N. I., Fernandez, J., & Gu, Y. (2023). Intelligent prediction of lower extremity loadings during badminton lunge footwork in a lab-simulated court. Front Bioeng Biotechnol, 11, 1229574. https://doi.org/10.3389/fbioe.2023.1229574

Zhong, Z., & Di, W. (2025). Technological advancements in sports injury: diagnosis and treatment. J Sports Med Phys Fitness. https://doi.org/10.23736/S0022-4707.25.16817-5

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)