Exercise-induced neuroplasticity Molecular mechanisms and implications for cognitive health and disease intervention
Main Article Content
Abstract
This review synthesizes recent advances in elucidating the molecular basis underlying the effects of exercise on neuroplasticity. Specifically, we will focus on how exercise induces changes in neural connectivity at different levels of organization through conserved signalling pathways mediated by brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and dopamine, which differentially modulate region-specific synaptic plasticity, neurogenesis, and large-scale brain network reorganization. Recent technological breakthroughs have enabled the exploration of cellular heterogeneity and circuit-level plasticity in the hippocampus and prefrontal cortex through single-cell sequencing and optogenetics following chronic and acute exercise interventions. Additionally, recent evidence suggests that the gut microbiota-brain axis plays a regulatory role in mediating the effects of exercise on neuroplasticity. Clinically, exercise interventions can mitigate the pathophysiology of neurodegenerative diseases (NDs), psychiatric disorders, and aid recovery after brain injury. In the future, we envision personalized exercise prescriptions based on individual molecular and phenotypic profiles as an emerging concept in the field of precision medicine. From an evolutionary perspective, the co-adaptation of physical activity and cognitive capacity highlights the adaptive significance of exercise-induced neuroplasticity. Through the integration of basic and clinical science, we hope this review will propel the field forward to new, more targeted, efficacious interventions.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published elsewhere in any language nor shall be submitted for publication elsewhere while under consideration by Journal of Human Sport and Exercise (JHSE). Each author also accepts that the JHSE will not be held legally responsible for any claims of compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Please include at the end of the acknowledgements a declaration that the experiments comply with the current laws of the country in which they were performed. The editors reserve the right to reject manuscripts that do not comply with the abovementioned requirements. The author(s) will be held responsible for false statements or failure to fulfill the above-mentioned requirements.
This title is licensed under a Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).
You are free to:
Share — copy and redistribute the material in any medium or format.
Adapt — remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NonCommercial — You may not use the material for commercial purposes.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
How to Cite
Funding data
-
Natural Science Foundation of Heilongjiang Province
Grant numbers LH2021C054
References
Abuleil, D., Thompson, B., & Dalton, K. (2022). Aerobic Exercise and Human Visual Cortex Neuroplasticity: A Narrative Review. Neural Plast, 2022, 6771999. https://doi.org/10.1155/2022/6771999
Ashdown-Franks, G., Firth, J., Carney, R., Carvalho, A. F., Hallgren, M., Koyanagi, A.,…Stubbs, B. (2020). Exercise as Medicine for Mental and Substance Use Disorders: A Meta-review of the Benefits for Neuropsychiatric and Cognitive Outcomes. Sports Med, 50(1), 151-170. https://doi.org/10.1007/s40279-019-01187-6
Bach, S. V., Bauman, A. J., Hosein, D., Tuscher, J. J., Ianov, L., Greathouse, K. M.,…Day, J. J. (2023). Distinct roles of Bdnf I and Bdnf IV transcript variant expression in hippocampal neurons. bioRxiv. https://doi.org/10.1101/2023.04.05.535694
Bach, S. V., Bauman, A. J., Hosein, D., Tuscher, J. J., Ianov, L., Greathouse, K. M.,…Day, J. J. (2024). Distinct roles of Bdnf I and Bdnf IV transcript variant expression in hippocampal neurons. Hippocampus, 34(5), 218-229. https://doi.org/10.1002/hipo.23600
Barnes, J. N., Pearson, A. G., Corkery, A. T., Eisenmann, N. A., & Miller, K. B. (2021). Exercise, Arterial Stiffness, and Cerebral Vascular Function: Potential Impact on Brain Health. J Int Neuropsychol Soc, 27(8), 761-775. https://doi.org/10.1017/S1355617721000394
Bendau, A., Petzold, M. B., Kaminski, J., Plag, J., & Ströhle, A. (2024). Exercise as Treatment for "Stress-Related" Mental Disorders. Curr Neuropharmacol, 22(3), 420-436. https://doi.org/10.2174/1570159X22666230927103308
Berglund, K., Stern, M. A., & Gross, R. E. (2021). Bioluminescence-Optogenetics. Adv Exp Med Biol, 1293, 281-293. https://doi.org/10.1007/978-981-15-8763-4_17
Blair, H. J., Morales, L., Cryan, J. F., & Aburto, M. R. (2025). Neuroglia and the microbiota-gut-brain axis. Handb Clin Neurol, 209, 171-196. https://doi.org/10.1016/B978-0-443-19104-6.00001-2
Bray, N. W., Pieruccini-Faria, F., Bartha, R., Doherty, T. J., Nagamatsu, L. S., & Montero-Odasso, M. (2021). The effect of physical exercise on functional brain network connectivity in older adults with and without cognitive impairment. A systematic review. Mech Ageing Dev, 196, 111493. https://doi.org/10.1016/j.mad.2021.111493
Calabrò, R. S., Calderone, A., & Fiorente, N. (2025). Neurosciences and Sports Rehabilitation in ACLR: A Narrative Review on Winning Alliance Strategies and Connecting the Dots. J Funct Morphol Kinesiol, 10(2). https://doi.org/10.3390/jfmk10020119
Chen, L., Sun, Y., Li, J., & Zhang, Y. (2020). A photoactivatable microRNA probe for identification of microRNA targets and light-controlled suppression of microRNA target expression. Chem Commun (Camb), 56(4), 627-630. https://doi.org/10.1039/C9CC08277H
Chen, L., Zou, Z., Dang, C., Wang, G., Zhu, T., & Liang, G. (2025). Membrane Protein Modulators in Neuroinflammation. Curr Neuropharmacol. https://doi.org/10.2174/011570159X375716250701111204
Chowdhury, S., & Yamanaka, A. (2021). Fiberless Optogenetics. Adv Exp Med Biol, 1293, 407-416. https://doi.org/10.1007/978-981-15-8763-4_26
Corkrum, M., & Araque, A. (2021). Astrocyte-neuron signaling in the mesolimbic dopamine system: the hidden stars of dopamine signaling. Neuropsychopharmacology, 46(11), 1864-1872. https://doi.org/10.1038/s41386-021-01090-7
Cornelison, C., & Fadel, S. (2022). Clickable Biomaterials for Modulating Neuroinflammation. Int J Mol Sci, 23(15). https://doi.org/10.3390/ijms23158496
Crow, M., & Gillis, J. (2019). Single cell RNA-sequencing: replicability of cell types. Curr Opin Neurobiol, 56, 69-77. https://doi.org/10.1016/j.conb.2018.12.002
Cryan, J. F., O'Riordan, K. J., Cowan, C. S. M., Sandhu, K. V., Bastiaanssen, T. F. S., Boehme, M.,…Dinan, T. G. (2019). The Microbiota-Gut-Brain Axis. Physiol Rev, 99(4), 1877-2013. https://doi.org/10.1152/physrev.00018.2018
Da Silva-Grigoletto, M. E., Pereira-Monteiro, M. R., Aragão-Santos, J. C., Vasconcelos, A. B. S., Marcos-Pardo, P. J., & Fortes, L. S. (2024). Brain functional training: a perspective article. Front Aging, 5, 1368878. https://doi.org/10.3389/fragi.2024.1368878
Deng, J., Wang, H., Fu, T., Xu, C., Zhu, Q., Guo, L., & Zhu, Y. (2024). Physical activity improves the visual-spatial working memory of individuals with mild cognitive impairment or Alzheimer's disease: a systematic review and network meta-analysis. Front Public Health, 12, 1365589. https://doi.org/10.3389/fpubh.2024.1365589
Dhahbi, W., Briki, W., Heissel, A., Schega, L., Dergaa, I., Guelmami, N.,…Chaabene, H. (2025). Physical Activity to Counter Age-Related Cognitive Decline: Benefits of Aerobic, Resistance, and Combined Training-A Narrative Review. Sports Med Open, 11(1), 56. https://doi.org/10.1186/s40798-025-00857-2
Gao, X., Chen, Y., & Cheng, P. (2024). Unlocking the potential of exercise: harnessing myokines to delay musculoskeletal aging and improve cognitive health. Front Physiol, 15, 1338875. https://doi.org/10.3389/fphys.2024.1338875
Ha, J., Park, J. H., Lee, J. S., Kim, H. Y., Song, J. O., Yoo, J.,…Cho, J. W. (2024). Effectiveness of Live-Streaming Tele-Exercise Intervention in Patients With Parkinson's Disease: A Pilot Study. J Mov Disord, 17(2), 189-197. https://doi.org/10.14802/jmd.23251
Hashimoto, T., Tsukamoto, H., Ando, S., & Ogoh, S. (2021). Effect of Exercise on Brain Health: The Potential Role of Lactate as a Myokine. Metabolites, 11(12). https://doi.org/10.3390/metabo11120813
Hochmuth, L., & Hirrlinger, J. (2024). Physiological and Pathological Role of mTOR Signaling in Astrocytes. Neurochem Res, 50(1), 53. https://doi.org/10.1007/s11064-024-04306-6
Huang, X., Zhao, X., Cai, Y., & Wan, Q. (2022). The cerebral changes induced by exercise interventions in people with mild cognitive impairment and Alzheimer's disease: A systematic review. Arch Gerontol Geriatr, 98, 104547. https://doi.org/10.1016/j.archger.2021.104547
Hwang, E., Portillo, B., Grose, K., Fujikawa, T., & Williams, K. W. (2023). Exercise-induced hypothalamic neuroplasticity: Implications for energy and glucose metabolism. Mol Metab, 73, 101745. https://doi.org/10.1016/j.molmet.2023.101745
Jiang, W., Wang, X., & Mao, L. (2025). Effects of resistance exercise on cognitive function, neurotrophic factors, brain structure, and brain function in older adults: A narrative review. J Alzheimers Dis, 107(1), 15-38. https://doi.org/10.1177/13872877251359630
Karamacoska, D., Butt, A., Leung, I. H. K., Childs, R. L., Metri, N. J., Uruthiran, V.,…Steiner-Lim, G. Z. (2023). Brain function effects of exercise interventions for cognitive decline: a systematic review and meta-analysis. Front Neurosci, 17, 1127065. https://doi.org/10.3389/fnins.2023.1127065
Klein, T., Braunsmann, L., Koschate, J., Hoffmann, U., Foitschik, T., Krieger, S.,…Abeln, V. (2023). Short-term isolation effects on the brain, cognitive performance, and sleep-The role of exercise. Front Physiol, 14, 903072. https://doi.org/10.3389/fphys.2023.903072
Lee, A., Lee, J. Y., Jung, S. W., Shin, S. Y., Ryu, H. S., Jang, S. H.,…Kim, Y. S. (2023). [Brain-Gut-Microbiota Axis]. Korean J Gastroenterol, 81(4), 145-153. https://doi.org/10.4166/kjg.2023.028
Li, F., Geng, X., Yun, H. J., Haddad, Y., Chen, Y., & Ding, Y. (2021). Neuroplastic Effect of Exercise Through Astrocytes Activation and Cellular Crosstalk. Aging Dis, 12(7), 1644-1657. https://doi.org/10.14336/AD.2021.0325
Liu, Q., Novak, M. K., Pepin, R. M., Eich, T., & Hu, W. (2021). microRNA-mediated regulation of microRNA machinery controls cell fate decisions. Elife, 10. https://doi.org/10.7554/eLife.72289
López-Ortiz, S., Valenzuela, P. L., Seisdedos, M. M., Morales, J. S., Vega, T., Castillo-García, A.,…Santos-Lozano, A. (2021). Exercise interventions in Alzheimer's disease: A systematic review and meta-analysis of randomized controlled trials. Ageing Res Rev, 72, 101479. https://doi.org/10.1016/j.arr.2021.101479
Lorenzo-García, P., Cavero-Redondo, I., Núñez de Arenas-Arroyo, S., Guzmán-Pavón, M. J., Priego-Jiménez, S., & Álvarez-Bueno, C. (2024). Effects of physical exercise interventions on balance, postural stability and general mobility in Parkinson's disease: a network meta-analysis. J Rehabil Med, 56, jrm10329. https://doi.org/10.2340/jrm.v56.10329
Lu, C., Wu, X., Ma, H., Wang, Q., Wang, Y., Luo, Y.,…Xu, H. (2019). Optogenetic Stimulation Enhanced Neuronal Plasticities in Motor Recovery after Ischemic Stroke. Neural Plast, 2019, 5271573. https://doi.org/10.1155/2019/5271573
Lundquist, A. J., Parizher, J., Petzinger, G. M., & Jakowec, M. W. (2019). Exercise induces region-specific remodeling of astrocyte morphology and reactive astrocyte gene expression patterns in male mice. J Neurosci Res, 97(9), 1081-1094. https://doi.org/10.1002/jnr.24430
Mantovani, E., Bressan, M. M., Tinazzi, M., & Tamburin, S. (2024). Towards multimodal cognition-based treatment for cognitive impairment in Parkinson's disease: drugs, exercise, non-invasive brain stimulation and technologies. Curr Opin Neurol, 37(6), 629-637. https://doi.org/10.1097/WCO.0000000000001310
Marciante, A. B., Tadjalli, A., Burrowes, K. A., Oberto, J. R., Luca, E. K., Seven, Y. B.,…Mitchell, G. S. (2024). Microglia regulate motor neuron plasticity via reciprocal fractalkine/adenosine signaling. bioRxiv. https://doi.org/10.1101/2024.05.07.592939
Mersmann, F., Bohm, S., Domroes, T., Weidlich, K., & Arampatzis, A. (2025). Personalized Injury Risk Assessment and Exercise Prescription Based on Tendon Strain. Exerc Sport Sci Rev, 53(2), 77-86. https://doi.org/10.1249/JES.0000000000000359
MicroRNAs. (2025). Nat Biotechnol, 43(9), 1424. https://doi.org/10.1038/s41587-025-02800-y
Min, K. W., Jo, M. H., Song, M., Lee, J. W., Shim, M. J., Kim, K.,…Yoon, J. H. (2024). Mature microRNA-binding protein QKI promotes microRNA-mediated gene silencing. RNA Biol, 21(1), 1-15. https://doi.org/10.1080/15476286.2024.2314846
Müller, P., Duderstadt, Y., Lessmann, V., & Müller, N. G. (2020). Lactate and BDNF: Key Mediators of Exercise Induced Neuroplasticity? J Clin Med, 9(4). https://doi.org/10.3390/jcm9041136
Nakamura, S. (2021). [Early Rehabilitation]. No Shinkei Geka, 49(5), 1070-1083. https://doi.org/10.11477/mf.1436204491
Noone, J., Mucinski, J. M., DeLany, J. P., Sparks, L. M., & Goodpaster, B. H. (2024). Understanding the variation in exercise responses to guide personalized physical activity prescriptions. Cell Metab, 36(4), 702-724. https://doi.org/10.1016/j.cmet.2023.12.025
Oyovwi, M. O., Ogenma, U. T., & Onyenweny, A. (2025). Exploring the impact of exercise-induced BDNF on neuroplasticity in neurodegenerative and neuropsychiatric conditions. Mol Biol Rep, 52(1), 140. https://doi.org/10.1007/s11033-025-10248-1
Pascoe, M. C., Bailey, A. P., Craike, M., Carter, T., Patten, R., Stepto, N. K., & Parker, A. G. (2020). Exercise interventions for mental disorders in young people: a scoping review. BMJ Open Sport Exerc Med, 6(1), e000678. https://doi.org/10.1136/bmjsem-2019-000678
Peng, L. N., Lee, P. L., Chou, K. H., Lee, W. J., Lin, C. P., Chang, C. W.,…Chen, L. K. (2025). Enhancing Neurocognitive Health via Activity, Nutrition and Cognitive Exercise (ENHANCE): A Randomized Controlled Trial. J Cachexia Sarcopenia Muscle, 16(3), e13830. https://doi.org/10.1002/jcsm.13830
Pérez, R. F., Santamarina, P., Tejedor, J. R., Urdinguio, R. G., Álvarez-Pitti, J., Redon, P.,…Lurbe, E. (2019). Longitudinal genome-wide DNA methylation analysis uncovers persistent early-life DNA methylation changes. J Transl Med, 17(1), 15. https://doi.org/10.1186/s12967-018-1751-9
Pike, M. M., Alsouqi, A., Headley, S. A. E., Tuttle, K., Evans, E. E., Milch, C. M.,…Robinson-Cohen, C. (2020). Supervised Exercise Intervention and Overall Activity in CKD. Kidney Int Rep, 5(8), 1261-1270. https://doi.org/10.1016/j.ekir.2020.06.006
Playle, R., Dimitropoulou, P., Kelson, M., Quinn, L., & Busse, M. (2019). Exercise Interventions in Huntington's Disease: An Individual Patient Data Meta-Analysis. Mov Disord Clin Pract, 6(7), 567-575. https://doi.org/10.1002/mdc3.12809
Pujari, V. (2024). Moving to Improve Mental Health - The Role of Exercise in Cognitive Function: A Narrative Review. J Pharm Bioallied Sci, 16(Suppl 1), S26-s30. https://doi.org/10.4103/jpbs.jpbs_614_23
Ribarič, S. (2022). Physical Exercise, a Potential Non-Pharmacological Intervention for Attenuating Neuroinflammation and Cognitive Decline in Alzheimer's Disease Patients. Int J Mol Sci, 23(6). https://doi.org/10.3390/ijms23063245
Romanov, R., Mesarič, L., Perić, D., Vešligaj Damiš, J., & Petrova Filišič, Y. (2021). The effects of adapted physical exercise during rehabilitation in patients with traumatic brain injury. Turk J Phys Med Rehabil, 67(4), 482-489. https://doi.org/10.5606/tftrd.2021.6145
Rosso, C., Brustio, P. R., Manuello, J., & Rainoldi, A. (2025). Neuroplasticity of Brain Networks Through Exercise: A Narrative Review About Effect of Types, Intensities, and Durations. Sports (Basel), 13(8). https://doi.org/10.3390/sports13080280
Roy, S. K., Wang, J. J., & Xu, Y. M. (2023). Effects of exercise interventions in Alzheimer's disease: A meta-analysis. Brain Behav, 13(7), e3051. https://doi.org/10.1002/brb3.3051
Sakhare, A., Stradford, J., Ravichandran, R., Deng, R., Ruiz, J., Subramanian, K.,…Pa, J. (2021). Simultaneous Exercise and Cognitive Training in Virtual Reality Phase 2 Pilot Study: Impact on Brain Health and Cognition in Older Adults. Brain Plast, 7(2), 111-130. https://doi.org/10.3233/BPL-210126
Sandroff, B. M., Jones, C. D., Baird, J. F., & Motl, R. W. (2020). Systematic Review on Exercise Training as a Neuroplasticity-Inducing Behavior in Multiple Sclerosis. Neurorehabil Neural Repair, 34(7), 575-588. https://doi.org/10.1177/1545968320921836
Sarkar, S., Nguyen, H. M., Malovic, E., Luo, J., Langley, M., Palanisamy, B. N.,…Kanthasamy, A. G. (2020). Kv1.3 modulates neuroinflammation and neurodegeneration in Parkinson's disease. J Clin Invest, 130(8), 4195-4212. https://doi.org/10.1172/JCI136174
Savettiere, A., Louras, P., Langdon, S., & Fairchild, J. K. (2025). Identifying Biomarkers of Neuroplasticity Associated with Exercise-Induced Cognitive Change in Older Adults with MCI. Exp Aging Res, 51(5), 643-656. https://doi.org/10.1080/0361073X.2025.2470579
Shalabi, S., Belayachi, A., & Larrivée, B. (2024). Involvement of neuronal factors in tumor angiogenesis and the shaping of the cancer microenvironment. Front Immunol, 15, 1284629. https://doi.org/10.3389/fimmu.2024.1284629
Singaravelu Jaganathan, K., & Sullivan, K. A. (2022). Traumatic Brain Injury Rehabilitation: An Exercise Immunology Perspective. Exerc Immunol Rev, 28, 90-97.
Sinha, N., Berg, C. N., Yassa, M. A., & Gluck, M. A. (2021). Increased dynamic flexibility in the medial temporal lobe network following an exercise intervention mediates generalization of prior learning. Neurobiol Learn Mem, 177, 107340. https://doi.org/10.1016/j.nlm.2020.107340
Snowden, T., Morrison, J., Boerstra, M., Eyolfson, E., Acosta, C., Grafe, E.,…Christie, B. R. (2023). Brain changes: aerobic exercise for traumatic brain injury rehabilitation. Front Hum Neurosci, 17, 1307507. https://doi.org/10.3389/fnhum.2023.1307507
Szabo-Reed, A., Clutton, J., White, S., Van Sciver, A., White, D., Morris, J.,…Vidoni, E. D. (2022). COMbined Exercise Trial (COMET) to improve cognition in older adults: Rationale and methods. Contemp Clin Trials, 118, 106805. https://doi.org/10.1016/j.cct.2022.106805
Taguchi, S., Choudhury, M. E., Miyanishi, K., Nakanishi, Y., Kameda, K., Abe, N.,…Tanaka, J. (2019). Aggravating effects of treadmill exercises during the early-onset period in a rat traumatic brain injury model: When should rehabilitation exercises be initiated? IBRO Rep, 7, 82-89. https://doi.org/10.1016/j.ibror.2019.10.002
Thornton, M. A., & Hughes, E. G. (2020). Neuron-oligodendroglia interactions: Activity-dependent regulation of cellular signaling. Neurosci Lett, 727, 134916. https://doi.org/10.1016/j.neulet.2020.134916
Turco, C. V., & Nelson, A. J. (2021). Transcranial Magnetic Stimulation to Assess Exercise-Induced Neuroplasticity. Front Neuroergon, 2, 679033. https://doi.org/10.3389/fnrgo.2021.679033
Vints, W. A. J., Levin, O., Fujiyama, H., Verbunt, J., & Masiulis, N. (2022). Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Front Neuroendocrinol, 66, 100993. https://doi.org/10.1016/j.yfrne.2022.100993
Vogt, N. (2020). Optogenetic inhibition. Nat Methods, 17(1), 29. https://doi.org/10.1038/s41592-019-0712-4
Wackerhage, H., & Schoenfeld, B. J. (2021). Personalized, Evidence-Informed Training Plans and Exercise Prescriptions for Performance, Fitness and Health. Sports Med, 51(9), 1805-1813. https://doi.org/10.1007/s40279-021-01495-w
Weidlich, K., Domroes, T., Bohm, S., Arampatzis, A., & Mersmann, F. (2024). Addressing muscle-tendon imbalances in adult male athletes with personalized exercise prescription based on tendon strain. Eur J Appl Physiol, 124(11), 3201-3214. https://doi.org/10.1007/s00421-024-05525-z
White, B. A., Ivey, J. T., Velazquez-Cruz, R., Oliverio, R., Whitehead, B., Pinti, M.,…Karelina, K. (2023). Exercise intensity and sex alter neurometabolic, transcriptional, and functional recovery following traumatic brain injury. Exp Neurol, 368, 114483. https://doi.org/10.1016/j.expneurol.2023.114483
Wu, J., Xiao, W., Yip, J., Peng, L., Zheng, K., Takyi Bentil, O., & Ren, Z. (2022). Effects of Exercise on Neural Changes in Inhibitory Control: An ALE Meta-Analysis of fMRI Studies. Front Hum Neurosci, 16, 891095. https://doi.org/10.3389/fnhum.2022.891095
Xing, Y., & Bai, Y. (2020). A Review of Exercise-Induced Neuroplasticity in Ischemic Stroke: Pathology and Mechanisms. Mol Neurobiol, 57(10), 4218-4231. https://doi.org/10.1007/s12035-020-02021-1
Xu, W., & Shen, H. (2022). When RNA methylation meets DNA methylation. Nat Genet, 54(9), 1261-1262. https://doi.org/10.1038/s41588-022-01166-0
Xu, X., Liu, R., Li, Y., Zhang, C., Guo, C., Zhu, J.,…Momeni, M. R. (2024). Spinal Cord Injury: From MicroRNAs to Exosomal MicroRNAs. Mol Neurobiol, 61(8), 5974-5991. https://doi.org/10.1007/s12035-024-03954-7
Xu, X., Zhang, G., Xia, Y., Xie, H., Ding, Z., Wang, H.,…Sun, T. (2024). Influencing Factors and Implementation Pathways of Adherence Behavior in Intelligent Personalized Exercise Prescription: Qualitative Study. JMIR Mhealth Uhealth, 12, e59610. https://doi.org/10.2196/59610
Xu, Z., Tang, J., & Yi, W. (2024). Evidence mapping and quality assessment of systematic reviews on exercise intervention for Alzheimer's disease. Complement Ther Med, 84, 103065. https://doi.org/10.1016/j.ctim.2024.103065
Yang, D., Hou, N., & Jia, M. (2025). Multicomponent exercise interventions for older adults with Alzheimer's disease: A systematic review and meta-analytical perspective. J Alzheimers Dis, 106(3), 876-889. https://doi.org/10.1177/13872877251346989
Yang, S. Y., Lee, H. C., Huang, C. M., & Chen, J. J. (2021). Efficacy of Tai Chi-Style Multi-Component Exercise on Frontal-Related Cognition and Physical Health in Elderly With Amnestic Mild Cognitive Impairment. Front Aging, 2, 636390. https://doi.org/10.3389/fragi.2021.636390
Yi, Y., Hu, Y., Cui, M., Wang, C., & Wang, J. (2022). Effect of virtual reality exercise on interventions for patients with Alzheimer's disease: A systematic review. Front Psychiatry, 13, 1062162. https://doi.org/10.3389/fpsyt.2022.1062162
Zhao, Q. G., Zhang, H. R., Wen, X., Wang, Y., Chen, X. M., Chen, N.,…Lu, P. J. (2019). Exercise interventions on patients with end-stage renal disease: a systematic review. Clin Rehabil, 33(2), 147-156. https://doi.org/10.1177/0269215518817083
Zhu, X., Chen, W., Pinho, R. A., & Thirupathi, A. (2025). Lactate-induced metabolic signaling is the potential mechanism for reshaping the brain function - role of physical exercise. Front Endocrinol (Lausanne), 16, 1598419. https://doi.org/10.3389/fendo.2025.1598419
Zou, J., & Hao, S. (2024). Exercise-induced neuroplasticity: a new perspective on rehabilitation for chronic low back pain. Front Mol Neurosci, 17, 1407445. https://doi.org/10.3389/fnmol.2024.1407445