Exercise-induced neuroplasticity Molecular mechanisms and implications for cognitive health and disease intervention

Main Article Content

Heming Chen
Junjie Liu
https://orcid.org/0009-0000-9333-4154
Ying Li
Siyu Zheng
Zheheng Jia
Yang Xu
Wenyue Zhu
https://orcid.org/0009-0000-4125-4558
Yanyan Liu
Yang Ji
Yinghaoi Shen
https://orcid.org/0009-0009-4998-4649
Mi Zheng

Abstract

This review synthesizes recent advances in elucidating the molecular basis underlying the effects of exercise on neuroplasticity. Specifically, we will focus on how exercise induces changes in neural connectivity at different levels of organization through conserved signalling pathways mediated by brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and dopamine, which differentially modulate region-specific synaptic plasticity, neurogenesis, and large-scale brain network reorganization. Recent technological breakthroughs have enabled the exploration of cellular heterogeneity and circuit-level plasticity in the hippocampus and prefrontal cortex through single-cell sequencing and optogenetics following chronic and acute exercise interventions. Additionally, recent evidence suggests that the gut microbiota-brain axis plays a regulatory role in mediating the effects of exercise on neuroplasticity. Clinically, exercise interventions can mitigate the pathophysiology of neurodegenerative diseases (NDs), psychiatric disorders, and aid recovery after brain injury. In the future, we envision personalized exercise prescriptions based on individual molecular and phenotypic profiles as an emerging concept in the field of precision medicine. From an evolutionary perspective, the co-adaptation of physical activity and cognitive capacity highlights the adaptive significance of exercise-induced neuroplasticity. Through the integration of basic and clinical science, we hope this review will propel the field forward to new, more targeted, efficacious interventions.

Downloads

Download data is not yet available.

Article Details

Section

Review Paper

Author Biographies

Heming Chen, Harbin Sport University

Graduate School.

Junjie Liu, Harbin Sport University

Graduate School.

Ying Li, Harbin Sport University

Graduate School.

Siyu Zheng, Harbin Sport University

Graduate School.

Zheheng Jia, Harbin Sport University

Graduate School.

Yang Xu, Harbin Sport University

Graduate School.

Wenyue Zhu, China Three Gorges University

School of Basic Medicine.

Yanyan Liu, Harbin Sport University

Graduate School.

Yang Ji, Harbin Sport University

Graduate School.

Yinghaoi Shen, Harbin Sport University

Graduate School.

Mi Zheng, Harbin Sport University

Graduate School.

How to Cite

Chen, H., Liu, J., Li, Y., Zheng, S., Jia, Z., Xu, Y., Zhu, W., Liu, Y., Ji, Y., & Shen, Y. (2025). Exercise-induced neuroplasticity: Molecular mechanisms and implications for cognitive health and disease intervention (M. Zheng , Trans.). Journal of Human Sport and Exercise , 21(2), 391-406. https://doi.org/10.55860/jvppy090

Funding data

References

Abuleil, D., Thompson, B., & Dalton, K. (2022). Aerobic Exercise and Human Visual Cortex Neuroplasticity: A Narrative Review. Neural Plast, 2022, 6771999. https://doi.org/10.1155/2022/6771999

Ashdown-Franks, G., Firth, J., Carney, R., Carvalho, A. F., Hallgren, M., Koyanagi, A.,…Stubbs, B. (2020). Exercise as Medicine for Mental and Substance Use Disorders: A Meta-review of the Benefits for Neuropsychiatric and Cognitive Outcomes. Sports Med, 50(1), 151-170. https://doi.org/10.1007/s40279-019-01187-6

Bach, S. V., Bauman, A. J., Hosein, D., Tuscher, J. J., Ianov, L., Greathouse, K. M.,…Day, J. J. (2023). Distinct roles of Bdnf I and Bdnf IV transcript variant expression in hippocampal neurons. bioRxiv. https://doi.org/10.1101/2023.04.05.535694

Bach, S. V., Bauman, A. J., Hosein, D., Tuscher, J. J., Ianov, L., Greathouse, K. M.,…Day, J. J. (2024). Distinct roles of Bdnf I and Bdnf IV transcript variant expression in hippocampal neurons. Hippocampus, 34(5), 218-229. https://doi.org/10.1002/hipo.23600

Barnes, J. N., Pearson, A. G., Corkery, A. T., Eisenmann, N. A., & Miller, K. B. (2021). Exercise, Arterial Stiffness, and Cerebral Vascular Function: Potential Impact on Brain Health. J Int Neuropsychol Soc, 27(8), 761-775. https://doi.org/10.1017/S1355617721000394

Bendau, A., Petzold, M. B., Kaminski, J., Plag, J., & Ströhle, A. (2024). Exercise as Treatment for "Stress-Related" Mental Disorders. Curr Neuropharmacol, 22(3), 420-436. https://doi.org/10.2174/1570159X22666230927103308

Berglund, K., Stern, M. A., & Gross, R. E. (2021). Bioluminescence-Optogenetics. Adv Exp Med Biol, 1293, 281-293. https://doi.org/10.1007/978-981-15-8763-4_17

Blair, H. J., Morales, L., Cryan, J. F., & Aburto, M. R. (2025). Neuroglia and the microbiota-gut-brain axis. Handb Clin Neurol, 209, 171-196. https://doi.org/10.1016/B978-0-443-19104-6.00001-2

Bray, N. W., Pieruccini-Faria, F., Bartha, R., Doherty, T. J., Nagamatsu, L. S., & Montero-Odasso, M. (2021). The effect of physical exercise on functional brain network connectivity in older adults with and without cognitive impairment. A systematic review. Mech Ageing Dev, 196, 111493. https://doi.org/10.1016/j.mad.2021.111493

Calabrò, R. S., Calderone, A., & Fiorente, N. (2025). Neurosciences and Sports Rehabilitation in ACLR: A Narrative Review on Winning Alliance Strategies and Connecting the Dots. J Funct Morphol Kinesiol, 10(2). https://doi.org/10.3390/jfmk10020119

Chen, L., Sun, Y., Li, J., & Zhang, Y. (2020). A photoactivatable microRNA probe for identification of microRNA targets and light-controlled suppression of microRNA target expression. Chem Commun (Camb), 56(4), 627-630. https://doi.org/10.1039/C9CC08277H

Chen, L., Zou, Z., Dang, C., Wang, G., Zhu, T., & Liang, G. (2025). Membrane Protein Modulators in Neuroinflammation. Curr Neuropharmacol. https://doi.org/10.2174/011570159X375716250701111204

Chowdhury, S., & Yamanaka, A. (2021). Fiberless Optogenetics. Adv Exp Med Biol, 1293, 407-416. https://doi.org/10.1007/978-981-15-8763-4_26

Corkrum, M., & Araque, A. (2021). Astrocyte-neuron signaling in the mesolimbic dopamine system: the hidden stars of dopamine signaling. Neuropsychopharmacology, 46(11), 1864-1872. https://doi.org/10.1038/s41386-021-01090-7

Cornelison, C., & Fadel, S. (2022). Clickable Biomaterials for Modulating Neuroinflammation. Int J Mol Sci, 23(15). https://doi.org/10.3390/ijms23158496

Crow, M., & Gillis, J. (2019). Single cell RNA-sequencing: replicability of cell types. Curr Opin Neurobiol, 56, 69-77. https://doi.org/10.1016/j.conb.2018.12.002

Cryan, J. F., O'Riordan, K. J., Cowan, C. S. M., Sandhu, K. V., Bastiaanssen, T. F. S., Boehme, M.,…Dinan, T. G. (2019). The Microbiota-Gut-Brain Axis. Physiol Rev, 99(4), 1877-2013. https://doi.org/10.1152/physrev.00018.2018

Da Silva-Grigoletto, M. E., Pereira-Monteiro, M. R., Aragão-Santos, J. C., Vasconcelos, A. B. S., Marcos-Pardo, P. J., & Fortes, L. S. (2024). Brain functional training: a perspective article. Front Aging, 5, 1368878. https://doi.org/10.3389/fragi.2024.1368878

Deng, J., Wang, H., Fu, T., Xu, C., Zhu, Q., Guo, L., & Zhu, Y. (2024). Physical activity improves the visual-spatial working memory of individuals with mild cognitive impairment or Alzheimer's disease: a systematic review and network meta-analysis. Front Public Health, 12, 1365589. https://doi.org/10.3389/fpubh.2024.1365589

Dhahbi, W., Briki, W., Heissel, A., Schega, L., Dergaa, I., Guelmami, N.,…Chaabene, H. (2025). Physical Activity to Counter Age-Related Cognitive Decline: Benefits of Aerobic, Resistance, and Combined Training-A Narrative Review. Sports Med Open, 11(1), 56. https://doi.org/10.1186/s40798-025-00857-2

Gao, X., Chen, Y., & Cheng, P. (2024). Unlocking the potential of exercise: harnessing myokines to delay musculoskeletal aging and improve cognitive health. Front Physiol, 15, 1338875. https://doi.org/10.3389/fphys.2024.1338875

Ha, J., Park, J. H., Lee, J. S., Kim, H. Y., Song, J. O., Yoo, J.,…Cho, J. W. (2024). Effectiveness of Live-Streaming Tele-Exercise Intervention in Patients With Parkinson's Disease: A Pilot Study. J Mov Disord, 17(2), 189-197. https://doi.org/10.14802/jmd.23251

Hashimoto, T., Tsukamoto, H., Ando, S., & Ogoh, S. (2021). Effect of Exercise on Brain Health: The Potential Role of Lactate as a Myokine. Metabolites, 11(12). https://doi.org/10.3390/metabo11120813

Hochmuth, L., & Hirrlinger, J. (2024). Physiological and Pathological Role of mTOR Signaling in Astrocytes. Neurochem Res, 50(1), 53. https://doi.org/10.1007/s11064-024-04306-6

Huang, X., Zhao, X., Cai, Y., & Wan, Q. (2022). The cerebral changes induced by exercise interventions in people with mild cognitive impairment and Alzheimer's disease: A systematic review. Arch Gerontol Geriatr, 98, 104547. https://doi.org/10.1016/j.archger.2021.104547

Hwang, E., Portillo, B., Grose, K., Fujikawa, T., & Williams, K. W. (2023). Exercise-induced hypothalamic neuroplasticity: Implications for energy and glucose metabolism. Mol Metab, 73, 101745. https://doi.org/10.1016/j.molmet.2023.101745

Jiang, W., Wang, X., & Mao, L. (2025). Effects of resistance exercise on cognitive function, neurotrophic factors, brain structure, and brain function in older adults: A narrative review. J Alzheimers Dis, 107(1), 15-38. https://doi.org/10.1177/13872877251359630

Karamacoska, D., Butt, A., Leung, I. H. K., Childs, R. L., Metri, N. J., Uruthiran, V.,…Steiner-Lim, G. Z. (2023). Brain function effects of exercise interventions for cognitive decline: a systematic review and meta-analysis. Front Neurosci, 17, 1127065. https://doi.org/10.3389/fnins.2023.1127065

Klein, T., Braunsmann, L., Koschate, J., Hoffmann, U., Foitschik, T., Krieger, S.,…Abeln, V. (2023). Short-term isolation effects on the brain, cognitive performance, and sleep-The role of exercise. Front Physiol, 14, 903072. https://doi.org/10.3389/fphys.2023.903072

Lee, A., Lee, J. Y., Jung, S. W., Shin, S. Y., Ryu, H. S., Jang, S. H.,…Kim, Y. S. (2023). [Brain-Gut-Microbiota Axis]. Korean J Gastroenterol, 81(4), 145-153. https://doi.org/10.4166/kjg.2023.028

Li, F., Geng, X., Yun, H. J., Haddad, Y., Chen, Y., & Ding, Y. (2021). Neuroplastic Effect of Exercise Through Astrocytes Activation and Cellular Crosstalk. Aging Dis, 12(7), 1644-1657. https://doi.org/10.14336/AD.2021.0325

Liu, Q., Novak, M. K., Pepin, R. M., Eich, T., & Hu, W. (2021). microRNA-mediated regulation of microRNA machinery controls cell fate decisions. Elife, 10. https://doi.org/10.7554/eLife.72289

López-Ortiz, S., Valenzuela, P. L., Seisdedos, M. M., Morales, J. S., Vega, T., Castillo-García, A.,…Santos-Lozano, A. (2021). Exercise interventions in Alzheimer's disease: A systematic review and meta-analysis of randomized controlled trials. Ageing Res Rev, 72, 101479. https://doi.org/10.1016/j.arr.2021.101479

Lorenzo-García, P., Cavero-Redondo, I., Núñez de Arenas-Arroyo, S., Guzmán-Pavón, M. J., Priego-Jiménez, S., & Álvarez-Bueno, C. (2024). Effects of physical exercise interventions on balance, postural stability and general mobility in Parkinson's disease: a network meta-analysis. J Rehabil Med, 56, jrm10329. https://doi.org/10.2340/jrm.v56.10329

Lu, C., Wu, X., Ma, H., Wang, Q., Wang, Y., Luo, Y.,…Xu, H. (2019). Optogenetic Stimulation Enhanced Neuronal Plasticities in Motor Recovery after Ischemic Stroke. Neural Plast, 2019, 5271573. https://doi.org/10.1155/2019/5271573

Lundquist, A. J., Parizher, J., Petzinger, G. M., & Jakowec, M. W. (2019). Exercise induces region-specific remodeling of astrocyte morphology and reactive astrocyte gene expression patterns in male mice. J Neurosci Res, 97(9), 1081-1094. https://doi.org/10.1002/jnr.24430

Mantovani, E., Bressan, M. M., Tinazzi, M., & Tamburin, S. (2024). Towards multimodal cognition-based treatment for cognitive impairment in Parkinson's disease: drugs, exercise, non-invasive brain stimulation and technologies. Curr Opin Neurol, 37(6), 629-637. https://doi.org/10.1097/WCO.0000000000001310

Marciante, A. B., Tadjalli, A., Burrowes, K. A., Oberto, J. R., Luca, E. K., Seven, Y. B.,…Mitchell, G. S. (2024). Microglia regulate motor neuron plasticity via reciprocal fractalkine/adenosine signaling. bioRxiv. https://doi.org/10.1101/2024.05.07.592939

Mersmann, F., Bohm, S., Domroes, T., Weidlich, K., & Arampatzis, A. (2025). Personalized Injury Risk Assessment and Exercise Prescription Based on Tendon Strain. Exerc Sport Sci Rev, 53(2), 77-86. https://doi.org/10.1249/JES.0000000000000359

MicroRNAs. (2025). Nat Biotechnol, 43(9), 1424. https://doi.org/10.1038/s41587-025-02800-y

Min, K. W., Jo, M. H., Song, M., Lee, J. W., Shim, M. J., Kim, K.,…Yoon, J. H. (2024). Mature microRNA-binding protein QKI promotes microRNA-mediated gene silencing. RNA Biol, 21(1), 1-15. https://doi.org/10.1080/15476286.2024.2314846

Müller, P., Duderstadt, Y., Lessmann, V., & Müller, N. G. (2020). Lactate and BDNF: Key Mediators of Exercise Induced Neuroplasticity? J Clin Med, 9(4). https://doi.org/10.3390/jcm9041136

Nakamura, S. (2021). [Early Rehabilitation]. No Shinkei Geka, 49(5), 1070-1083. https://doi.org/10.11477/mf.1436204491

Noone, J., Mucinski, J. M., DeLany, J. P., Sparks, L. M., & Goodpaster, B. H. (2024). Understanding the variation in exercise responses to guide personalized physical activity prescriptions. Cell Metab, 36(4), 702-724. https://doi.org/10.1016/j.cmet.2023.12.025

Oyovwi, M. O., Ogenma, U. T., & Onyenweny, A. (2025). Exploring the impact of exercise-induced BDNF on neuroplasticity in neurodegenerative and neuropsychiatric conditions. Mol Biol Rep, 52(1), 140. https://doi.org/10.1007/s11033-025-10248-1

Pascoe, M. C., Bailey, A. P., Craike, M., Carter, T., Patten, R., Stepto, N. K., & Parker, A. G. (2020). Exercise interventions for mental disorders in young people: a scoping review. BMJ Open Sport Exerc Med, 6(1), e000678. https://doi.org/10.1136/bmjsem-2019-000678

Peng, L. N., Lee, P. L., Chou, K. H., Lee, W. J., Lin, C. P., Chang, C. W.,…Chen, L. K. (2025). Enhancing Neurocognitive Health via Activity, Nutrition and Cognitive Exercise (ENHANCE): A Randomized Controlled Trial. J Cachexia Sarcopenia Muscle, 16(3), e13830. https://doi.org/10.1002/jcsm.13830

Pérez, R. F., Santamarina, P., Tejedor, J. R., Urdinguio, R. G., Álvarez-Pitti, J., Redon, P.,…Lurbe, E. (2019). Longitudinal genome-wide DNA methylation analysis uncovers persistent early-life DNA methylation changes. J Transl Med, 17(1), 15. https://doi.org/10.1186/s12967-018-1751-9

Pike, M. M., Alsouqi, A., Headley, S. A. E., Tuttle, K., Evans, E. E., Milch, C. M.,…Robinson-Cohen, C. (2020). Supervised Exercise Intervention and Overall Activity in CKD. Kidney Int Rep, 5(8), 1261-1270. https://doi.org/10.1016/j.ekir.2020.06.006

Playle, R., Dimitropoulou, P., Kelson, M., Quinn, L., & Busse, M. (2019). Exercise Interventions in Huntington's Disease: An Individual Patient Data Meta-Analysis. Mov Disord Clin Pract, 6(7), 567-575. https://doi.org/10.1002/mdc3.12809

Pujari, V. (2024). Moving to Improve Mental Health - The Role of Exercise in Cognitive Function: A Narrative Review. J Pharm Bioallied Sci, 16(Suppl 1), S26-s30. https://doi.org/10.4103/jpbs.jpbs_614_23

Ribarič, S. (2022). Physical Exercise, a Potential Non-Pharmacological Intervention for Attenuating Neuroinflammation and Cognitive Decline in Alzheimer's Disease Patients. Int J Mol Sci, 23(6). https://doi.org/10.3390/ijms23063245

Romanov, R., Mesarič, L., Perić, D., Vešligaj Damiš, J., & Petrova Filišič, Y. (2021). The effects of adapted physical exercise during rehabilitation in patients with traumatic brain injury. Turk J Phys Med Rehabil, 67(4), 482-489. https://doi.org/10.5606/tftrd.2021.6145

Rosso, C., Brustio, P. R., Manuello, J., & Rainoldi, A. (2025). Neuroplasticity of Brain Networks Through Exercise: A Narrative Review About Effect of Types, Intensities, and Durations. Sports (Basel), 13(8). https://doi.org/10.3390/sports13080280

Roy, S. K., Wang, J. J., & Xu, Y. M. (2023). Effects of exercise interventions in Alzheimer's disease: A meta-analysis. Brain Behav, 13(7), e3051. https://doi.org/10.1002/brb3.3051

Sakhare, A., Stradford, J., Ravichandran, R., Deng, R., Ruiz, J., Subramanian, K.,…Pa, J. (2021). Simultaneous Exercise and Cognitive Training in Virtual Reality Phase 2 Pilot Study: Impact on Brain Health and Cognition in Older Adults. Brain Plast, 7(2), 111-130. https://doi.org/10.3233/BPL-210126

Sandroff, B. M., Jones, C. D., Baird, J. F., & Motl, R. W. (2020). Systematic Review on Exercise Training as a Neuroplasticity-Inducing Behavior in Multiple Sclerosis. Neurorehabil Neural Repair, 34(7), 575-588. https://doi.org/10.1177/1545968320921836

Sarkar, S., Nguyen, H. M., Malovic, E., Luo, J., Langley, M., Palanisamy, B. N.,…Kanthasamy, A. G. (2020). Kv1.3 modulates neuroinflammation and neurodegeneration in Parkinson's disease. J Clin Invest, 130(8), 4195-4212. https://doi.org/10.1172/JCI136174

Savettiere, A., Louras, P., Langdon, S., & Fairchild, J. K. (2025). Identifying Biomarkers of Neuroplasticity Associated with Exercise-Induced Cognitive Change in Older Adults with MCI. Exp Aging Res, 51(5), 643-656. https://doi.org/10.1080/0361073X.2025.2470579

Shalabi, S., Belayachi, A., & Larrivée, B. (2024). Involvement of neuronal factors in tumor angiogenesis and the shaping of the cancer microenvironment. Front Immunol, 15, 1284629. https://doi.org/10.3389/fimmu.2024.1284629

Singaravelu Jaganathan, K., & Sullivan, K. A. (2022). Traumatic Brain Injury Rehabilitation: An Exercise Immunology Perspective. Exerc Immunol Rev, 28, 90-97.

Sinha, N., Berg, C. N., Yassa, M. A., & Gluck, M. A. (2021). Increased dynamic flexibility in the medial temporal lobe network following an exercise intervention mediates generalization of prior learning. Neurobiol Learn Mem, 177, 107340. https://doi.org/10.1016/j.nlm.2020.107340

Snowden, T., Morrison, J., Boerstra, M., Eyolfson, E., Acosta, C., Grafe, E.,…Christie, B. R. (2023). Brain changes: aerobic exercise for traumatic brain injury rehabilitation. Front Hum Neurosci, 17, 1307507. https://doi.org/10.3389/fnhum.2023.1307507

Szabo-Reed, A., Clutton, J., White, S., Van Sciver, A., White, D., Morris, J.,…Vidoni, E. D. (2022). COMbined Exercise Trial (COMET) to improve cognition in older adults: Rationale and methods. Contemp Clin Trials, 118, 106805. https://doi.org/10.1016/j.cct.2022.106805

Taguchi, S., Choudhury, M. E., Miyanishi, K., Nakanishi, Y., Kameda, K., Abe, N.,…Tanaka, J. (2019). Aggravating effects of treadmill exercises during the early-onset period in a rat traumatic brain injury model: When should rehabilitation exercises be initiated? IBRO Rep, 7, 82-89. https://doi.org/10.1016/j.ibror.2019.10.002

Thornton, M. A., & Hughes, E. G. (2020). Neuron-oligodendroglia interactions: Activity-dependent regulation of cellular signaling. Neurosci Lett, 727, 134916. https://doi.org/10.1016/j.neulet.2020.134916

Turco, C. V., & Nelson, A. J. (2021). Transcranial Magnetic Stimulation to Assess Exercise-Induced Neuroplasticity. Front Neuroergon, 2, 679033. https://doi.org/10.3389/fnrgo.2021.679033

Vints, W. A. J., Levin, O., Fujiyama, H., Verbunt, J., & Masiulis, N. (2022). Exerkines and long-term synaptic potentiation: Mechanisms of exercise-induced neuroplasticity. Front Neuroendocrinol, 66, 100993. https://doi.org/10.1016/j.yfrne.2022.100993

Vogt, N. (2020). Optogenetic inhibition. Nat Methods, 17(1), 29. https://doi.org/10.1038/s41592-019-0712-4

Wackerhage, H., & Schoenfeld, B. J. (2021). Personalized, Evidence-Informed Training Plans and Exercise Prescriptions for Performance, Fitness and Health. Sports Med, 51(9), 1805-1813. https://doi.org/10.1007/s40279-021-01495-w

Weidlich, K., Domroes, T., Bohm, S., Arampatzis, A., & Mersmann, F. (2024). Addressing muscle-tendon imbalances in adult male athletes with personalized exercise prescription based on tendon strain. Eur J Appl Physiol, 124(11), 3201-3214. https://doi.org/10.1007/s00421-024-05525-z

White, B. A., Ivey, J. T., Velazquez-Cruz, R., Oliverio, R., Whitehead, B., Pinti, M.,…Karelina, K. (2023). Exercise intensity and sex alter neurometabolic, transcriptional, and functional recovery following traumatic brain injury. Exp Neurol, 368, 114483. https://doi.org/10.1016/j.expneurol.2023.114483

Wu, J., Xiao, W., Yip, J., Peng, L., Zheng, K., Takyi Bentil, O., & Ren, Z. (2022). Effects of Exercise on Neural Changes in Inhibitory Control: An ALE Meta-Analysis of fMRI Studies. Front Hum Neurosci, 16, 891095. https://doi.org/10.3389/fnhum.2022.891095

Xing, Y., & Bai, Y. (2020). A Review of Exercise-Induced Neuroplasticity in Ischemic Stroke: Pathology and Mechanisms. Mol Neurobiol, 57(10), 4218-4231. https://doi.org/10.1007/s12035-020-02021-1

Xu, W., & Shen, H. (2022). When RNA methylation meets DNA methylation. Nat Genet, 54(9), 1261-1262. https://doi.org/10.1038/s41588-022-01166-0

Xu, X., Liu, R., Li, Y., Zhang, C., Guo, C., Zhu, J.,…Momeni, M. R. (2024). Spinal Cord Injury: From MicroRNAs to Exosomal MicroRNAs. Mol Neurobiol, 61(8), 5974-5991. https://doi.org/10.1007/s12035-024-03954-7

Xu, X., Zhang, G., Xia, Y., Xie, H., Ding, Z., Wang, H.,…Sun, T. (2024). Influencing Factors and Implementation Pathways of Adherence Behavior in Intelligent Personalized Exercise Prescription: Qualitative Study. JMIR Mhealth Uhealth, 12, e59610. https://doi.org/10.2196/59610

Xu, Z., Tang, J., & Yi, W. (2024). Evidence mapping and quality assessment of systematic reviews on exercise intervention for Alzheimer's disease. Complement Ther Med, 84, 103065. https://doi.org/10.1016/j.ctim.2024.103065

Yang, D., Hou, N., & Jia, M. (2025). Multicomponent exercise interventions for older adults with Alzheimer's disease: A systematic review and meta-analytical perspective. J Alzheimers Dis, 106(3), 876-889. https://doi.org/10.1177/13872877251346989

Yang, S. Y., Lee, H. C., Huang, C. M., & Chen, J. J. (2021). Efficacy of Tai Chi-Style Multi-Component Exercise on Frontal-Related Cognition and Physical Health in Elderly With Amnestic Mild Cognitive Impairment. Front Aging, 2, 636390. https://doi.org/10.3389/fragi.2021.636390

Yi, Y., Hu, Y., Cui, M., Wang, C., & Wang, J. (2022). Effect of virtual reality exercise on interventions for patients with Alzheimer's disease: A systematic review. Front Psychiatry, 13, 1062162. https://doi.org/10.3389/fpsyt.2022.1062162

Zhao, Q. G., Zhang, H. R., Wen, X., Wang, Y., Chen, X. M., Chen, N.,…Lu, P. J. (2019). Exercise interventions on patients with end-stage renal disease: a systematic review. Clin Rehabil, 33(2), 147-156. https://doi.org/10.1177/0269215518817083

Zhu, X., Chen, W., Pinho, R. A., & Thirupathi, A. (2025). Lactate-induced metabolic signaling is the potential mechanism for reshaping the brain function - role of physical exercise. Front Endocrinol (Lausanne), 16, 1598419. https://doi.org/10.3389/fendo.2025.1598419

Zou, J., & Hao, S. (2024). Exercise-induced neuroplasticity: a new perspective on rehabilitation for chronic low back pain. Front Mol Neurosci, 17, 1407445. https://doi.org/10.3389/fnmol.2024.1407445

Similar Articles

You may also start an advanced similarity search for this article.