Rest periods effect on biophysical responses during interval training at critical swimming velocity

Main Article Content

Yuki Funai
https://orcid.org/0000-0002-8145-1449
Shoichiro Taba
Yuta Kanegawa
Masaru Matsunami

Abstract

This study aimed to examine the effects of rest periods on physiological and mechanical parameters during interval training (IT) using critical swimming velocity (CV). Ten male national-level competitive swimmers (19.5 ± 1.1 years old) swam 20 × 100 m (100IT) and 10 × 200 m (200IT) depend on critical velocity under different rest conditions. Rest periods for each IT were 10 seconds (R1) and 20 seconds (R2) per 100 m repetitive swimming distance. Heart rate (HR), rating of perceived exertion (RPE), blood lactate concentration, stroke rate, and stroke length (SL) were measured during all IT sets. HR significantly differed between R1 (164.0–173.0 beats per minute [bpm]) and R2 (151.7–165.1 bpm) throughout the 100IT but did not during the 200IT (160.1–173.5 and 157.3–167.8 bpm, respectively) (p < .05). Moreover, the mean SL during the 100IT was significantly lower in R1 than in R2 (p < .05). However, the HR and RPE increased significantly in both 100IT and 200IT irrespective of rest periods (p < .05). Therefore, all IT sets were appropriate conditions for endurance training. Rest periods may have influenced the physiological and mechanical stimulation in the 100IT at CV, suggesting that aerobic metabolism differs between conditions.

Downloads

Download data is not yet available.

Article Details

Section

Performance Analysis of Sport

Author Biographies

Yuki Funai, Kumamoto Gakuen University

Department of Life Wellness.

Shoichiro Taba, Fukuoka University

Department of Sports Science.

Yuta Kanegawa, Fukuoka University

Graduate School of Sports and Health Science.

Masaru Matsunami, Aichi Gakusen University

Department of Management Nutrition.

How to Cite

Funai, Y., Taba, S., Kanegawa, Y., & Matsunami, M. (2025). Rest periods effect on biophysical responses during interval training at critical swimming velocity. Journal of Human Sport and Exercise , 20(3), 845-856. https://doi.org/10.55860/w0ek0b45

Funding data

References

Almeida, T. A. F., Massini, D. A., Silva Júnior, O. T., Venditti Júnior, R., Espada, M. A. C., Macedo, A. G., Reis, J. F., Alves, F. B., & Pessôa Filho, D. M. (2022). Time limit and VO2 kinetics at maximal aerobic velocity: Continuous vs. intermittent swimming trials. Front Physiol, 13, 982874. https://doi.org/10.3389/fphys.2022.982874

Almeida, T. A. F., Pessôa Filho, D. M., Espada, M. C., Reis, J. F., Sancassani, A., Massini, D. A., Santos, F. J., & Alves, F. J. (2021). Physiological responses during high-intensity interval training in young swimmers. Front Physiol, 12, 662029. https://doi.org/10.3389/fphys.2021.662029

Balsom, P. D., Seger, J.Y., Sjodin, B., & Ekblom, B. (1992). Maximal-intensity intermittent exercise: Effect of recovery duration. Int J Sports Med, 13(7), 528-533. https://doi.org/10.1055/s-2007-1021311

Billat, L. V. (2001). Interval training for performance: A scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: Aerobic interval training. Sports Med, 31(1), 13-31. https://doi.org/10.2165/00007256-200131010-00002

Blonc, S., Casas, H., Duche, P., Beaune, B., & Bedu, M. (1998). Effect of the recovery duration on the force-velocity relationship. Int J Sports Med, 19(4), 272-276. https://doi.org/10.1055/s-2007-971917

Carvalho, D. D., Soares, S., Zacca, R., Sousa, J., Marinho, D. A., Silva, A. J., Vilas-boas, J. P., & Fernandes, R. J. (2020). Anaerobic threshold biophysical characterization of the four swimming techniques. Int J Sports Med, 41(5), 318-327. https://doi.org/10.1055/a-0975-9532

Cohen, J. (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associate.

Demarie, S., Koralsztein, J. P., & Billat, V. (2000). Time limit and time at VO2max' during continuous and intermittent runs. J Sports Med Phys Fitness, 40(2), 96-102.

Dekerle, J., Brickley, G., Alberty, M., & Pelayo, P. (2010). Characterizing the slope of the distance-time relationship in swimming. J Sci Med Sport, 13(3), 365-370. https://doi.org/10.1016/j.jsams.2009.05.007

Fernandes, R. J., Carvalho, D. D., & Figueiredo, P. (2024). Training zones in competitive swimming: A biophysical approach. Front Sports Act Living, 6, 1363730. https://doi.org/10.3389/fspor.2024.1363730

Figueiredo, P., Morais, P., Vilas-Boas, J. P., & Fernandes, R. J. (2013). Changes in arm coordination and stroke parameters on transition through the lactate threshold. Eur J Appl Physiol, 113(8), 1957-1964. https://doi.org/10.1007/s00421-013-2617-8

Fox, E. L., Robinson, S., & Wiegman, D. L. (1969). Metabolic energy sources during continuous and interval running. J Appl Physiol, 27(2), 174-178. https://doi.org/10.1152/jappl.1969.27.2.174

Funai, Y., Taba, S., Kanegawa, Y., Taimura, A., & Matsunami, M. (2025). Biophysical analyses of various interval training sets at the critical swimming velocity. J Sports Med Phys Fitness, 65(2), 163-170. https://doi.org/10.23736/S0022-4707.24.15931-2

Hellard, P., Avalos-Fernandes, M., Lefort, G., Pla, R., Mujika, I., Toussaint, J. F., & Pyne, D. B. (2022). Elite swimmers' training patterns in the 25 weeks prior to their season's best performances: Insights into periodization from a 20 years cohort. Front Physiol, 10, 363. https://doi.org/10.3389/fphys.2019.00363

Machado, M. V., Borges, J. P., Galdino, I. S., Cunha, L., Sá Filho, A. S., Soares, D. C., & Júnior, O. A. (2019). Does the critical velocity represent the maximal lactate steady state in youth swimmers? Sci Sport, 34(3), e209-e215. https://doi.org/10.1016/j.scispo.2018.09.010

Machado, M. V., Júnior, O. A., Marques, A. C., Colantonio, E., Cyrino, E. S., & De Mello, M. T. (2011). Effect of 12 weeks of training on the critical velocity and maximal lactate steady state in swimmers. Eur J Sport Sci, 11(3), 165-170. https://doi.org/10.1080/17461391.2010.499973

Medbo, J. I., Mohn, A. C., Tabata, I., Bahr, R., Vaage, O., & Sejersted, O. M. (1988). Anaerobic capacity determined by the maximal accumulated O2 deficit. J Appl Physiol, 64(1), 50-60. https://doi.org/10.1152/jappl.1988.64.1.50

Monteiro, A. S., Magalhães, J. F., Knechtle, B., Buzzachera, C. F., Vilas-Boas, J. P., & Fernandes RJ. (2023). Acute ventilatory responses to swimming at increasing intensities. PeerJ, 11, e15042. https://doi.org/10.7717/peerj.15042

Neiva, H. P., Marques, M. C., Barbosa, T. M., Izquierdo, M., & Marinho, D. A. (2014). Warm-up and performance in competitive swimming. Sports Med, 44(3), 319-330. https://doi.org/10.1007/s40279-013-0117-y

Nikitakis, I. S., Paradisis, G. P., Bogdanis, G. C., & Toubekis AG. (2019). Physiological responses of continuous and intermittent swimming at critical speed and maximum lactate steady state in children and adolescent swimmers. Sports, 7(1), 25. https://doi.org/10.3390/sports7010025

Olbrecht, J., Madsen, O., Mader, A., Liesen, H., & Hollmann, W. (1985). Relationship between swimming velocity and lactic concentration during continuous and intermittent training exercise. Int J Sports Med, 6(2), 74-77. https://doi.org/10.1055/s-2008-1025816

Oliveira, M. F., Caputo, F., Dekerle, J., Denadai, B. S., & Greco, C. C. (2012). Stroking parameters during continuous and intermittent exercise in regional-level competitive swimmers. Int J Sports Med, 33(9), 696-701. https://doi.org/10.1055/s-0031-1298003

Onodera, K., & Miyashita, M. (1976). A study on the Japanese scale for rating of perceived exertion in endurance exercise. Jpn J Phys Educ Health Sport Sci, 21(4), 191-203. https://doi.org/10.5432/jjpehss.KJ00003405473

Pelarigo, J. G., Greco, C. C., Denadai, B. S., Fernandes, R. J., Vilas-Boas, J. P., & Pendergast, D.R. (2016). Do 5% changes around the maximal lactate steady state lead to swimming biophysical modifications? Hum Mov Sci, 49, 258-266. https://doi.org/10.1016/j.humov.2016.07.009

Petrigna, L., Karsten, B., Delextrat, A., Pajaujiene, S., Mani, D., Paoli, A., Palma, A., & Bianco, A. (2022). An updated methodology to estimate the critical velocity in front crawl swimming: A scoping review. Sci Sport, 37(5-6), 373-382. https://doi.org/10.1016/j.scispo.2021.06.003

Piiper, J., & Spiller, P. (1970). Repayment of O2 debt and resynthesis of high-energy phosphates in the gastrocnemius muscle of the dog. J Appl Physiol, 28(5), 657-62. https://doi.org/10.1152/jappl.1970.28.5.657

Ribeiro, J., Toubekis, A. G., Figueiredo, P., De Jesus, K., Toussaint, H. M., Alves, F., Vilas-Boas, J. P., & Fernandez, R. J. (2017). Biophysical determinants of front-crawl swimming at moderate and severe intensities. Int J Sport Physiol, 12(2), 241-246. https://doi.org/10.1123/ijspp.2015-0766

Rizzato, A., Marcolin, G., Rubini, A., Olivato, N., Fava, S., Paoli, A., & Bosco, G. (2018). Critical velocity in swimmers of different ages. J Sports Med Phys Fitness, 58(10), 1398-1402. https://doi.org/10.23736/S0022-4707.17.07570-3

Rodríguez, F. A., & Mader, A. (2010). Energy systems in swimming. In L. Seifert, D. Chollet, & I. Mujika (Eds.), World book of swimming (pp. 225-240). Nova Science Publisher.

Shimoyama Y., Tomikawa M., & Nomura T. (2003). Effect of rest periods on energy system contribution during interval swimming. Eur J Sport Sci, 3(1), 1-11. https://doi.org/10.1080/17461390300073103

Shimoyama, Y. & Nomura, T. (1999). Role of the rest interval during interval training at OBLA speed. In K. L. Keskinen, P. V. Komi, & A. P. Hollander (Eds.), Proceedings of the international symposium for biomechanics and medicine in swimming (pp. 459-464). University of Jyväskylä.

Sperlich, B., Matzka, M., & Holmberg, H. C. (2023) The proportional distribution of training by elite endurance athletes at different intensities during different phases of the season. Front Sports Act Living, 5, 1258585. https://doi.org/10.3389/fspor.2023.1258585

Wakayoshi, K., Ikuta, K., Yoshida, T., Udo, M., Moritani, T., Mutoh, Y., & Miyashita, M. (1992). Determination and validity of critical velocity as an index of swimming performance in the competitive swimmer. Eur J Appl Physiol, 64(2),153-157. https://doi.org/10.1007/BF00717953

Wakayoshi, K., Yoshida, T., Udo, M., Harada, T., Moritani, T., Mutoh, Y., & Miyashita M. (1993). Does critical swimming velocity represent exercise intensity at the maximal lactate steady state? Eur J Appl Physiol, 66(1), 90-95. https://doi.org/10.1007/BF00863406

Similar Articles

You may also start an advanced similarity search for this article.