Integrating multimodal AI technologies for sports injury prediction and rehabilitation Systematic review

Main Article Content

Pengbo Wang
Aodi Wang
https://orcid.org/0009-0002-0036-6515
Saidi Wang

Abstract

Traditional methods for sports injury prevention and rehabilitation rely predominantly on subjective clinician-guided assessments and standardized intervention protocols. These approaches often result in limited accuracy, delayed responsiveness, and insufficient personalization. Recent advances in artificial intelligence (AI), wearable sensor technologies, and multimodal analytics provide novel opportunities for objective, real-time, and personalized injury management strategies. Despite these advances, there remains a critical need for systematic synthesis and evaluation of integrated multimodal approaches. This systematic review critically evaluates contemporary developments in multimodal AI technologies applied specifically to sports injury prediction and rehabilitation. We systematically describe the biomechanical and physiological foundations of common acute and chronic sports injuries and present them within an integrated, five-stage injury recovery pipeline. Our analysis emphasizes AI methods including sensor fusion frameworks, time-series classification algorithms, and predictive analytics that enhance early injury detection, accurate risk modelling, and timely interventions. For the rehabilitation phase, we critically assess AI-supported motion quality assessment methods, adaptive feedback mechanisms, and individualized recovery protocols facilitated by wearable and vision-based technologies. Furthermore, we evaluate the real-world deployment and athlete-specific modelling strategies of AI systems, addressing challenges of environmental robustness, computational efficiency, and personalized adaptation. Multimodal AI technologies offer substantial potential for revolutionizing sports injury prediction and rehabilitation by enabling highly individualized, data-driven, and context-aware solutions. Nevertheless, significant challenges persist in the areas of model generalization, interpretability, privacy concerns, and clinical validation. Promising future research directions include the advancement of explainable AI frameworks, digital twin technologies, and multi-agent modelling approaches, aimed at overcoming these limitations and advancing personalized, intelligent sports medicine.

Downloads

Download data is not yet available.

Article Details

Section

Review Paper

Author Biographies

Pengbo Wang, Yunnan Minzu University

Sports Institute.

Aodi Wang, Henan Polytechnic

School of Marxism.

Saidi Wang, Henan University

School of Artificial Intelligence.

How to Cite

Wang, P., Wang, A., & Wang, S. (2025). Integrating multimodal AI technologies for sports injury prediction and rehabilitation: Systematic review. Journal of Human Sport and Exercise , 21(1), 22-37. https://doi.org/10.55860/w6j5wc21

Funding data

References

Adetiba, E., Iweanya, V. C., Popoola, S. I., Adetiba, J. N., & Menon, C. J. C. E. (2017). Automated detection of heart defects in athletes based on electrocardiography and artificial neural network. 4(1), 1411220. https://doi.org/10.1080/23311916.2017.1411220

Amendolara, A., Pfister, D., Settelmayer, M., Shah, M., Wu, V., Donnelly, S., . . . Bills, K. (2023). An Overview of Machine Learning Applications in Sports Injury Prediction. Cureus, 15(9), e46170. https://doi.org/10.7759/cureus.46170

Andriollo, L., Picchi, A., Sangaletti, R., Perticarini, L., Rossi, S. M. P., Logroscino, G., & Benazzo, F. (2024). The Role of Artificial Intelligence in Anterior Cruciate Ligament Injuries: Current Concepts and Future Perspectives. Healthcare (Basel), 12(3). https://doi.org/10.3390/healthcare12030300

Arzehgar, A., Seyedhasani, S. N., Ahmadi, F. B., Bagheri Baravati, F., Sadeghi Hesar, A., Kachooei, A. R., & Aalaei, S. (2025). Sensor-based technologies for motion analysis in sports injuries: a scoping review. BMC Sports Sci Med Rehabil, 17(1), 15. https://doi.org/10.1186/s13102-025-01063-z

Babu, A., Thuau, D., & Mandal, D. (2023). AI-enabled wearable sensor for real-time monitored personalized training of sportsperson. MRS Communications, 13(6), 1071-1075. https://doi.org/10.1557/s43579-023-00464-w

Calderón-Díaz, M., Silvestre Aguirre, R., Vásconez, J. P., Yáñez, R., Roby, M., Querales, M., & Salas, R. (2024). Explainable Machine Learning Techniques to Predict Muscle Injuries in Professional Soccer Players through Biomechanical Analysis. 24(1), 119. https://doi.org/10.3390/s24010119

Cao, Z., Hidalgo, G., Simon, T., Wei, S. E., & Sheikh, Y. (2021). OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE Trans Pattern Anal Mach Intell, 43(1), 172-186. https://doi.org/10.1109/TPAMI.2019.2929257

Claudino, J. G., Capanema, D. O., de Souza, T. V., Serrão, J. C., Machado Pereira, A. C., & Nassis, G. P. (2019). Current Approaches to the Use of Artificial Intelligence for Injury Risk Assessment and Performance Prediction in Team Sports: a Systematic Review. Sports Med Open, 5(1), 28. https://doi.org/10.1186/s40798-019-0202-3

Corban, J., Lorange, J. P., Laverdiere, C., Khoury, J., Rachevsky, G., Burman, M., & Martineau, P. A. (2021). Artificial Intelligence in the Management of Anterior Cruciate Ligament Injuries. Orthop J Sports Med, 9(7), 23259671211014206. https://doi.org/10.1177/23259671211014206

Desai, V. (2024). The Future of Artificial Intelligence in Sports Medicine and Return to Play. Semin Musculoskelet Radiol, 28(2), 203-212. https://doi.org/10.1055/s-0043-1778019

Gai, X. (2025). Application of flexible sensor multimodal data fusion system based on artificial synapse and machine learning in athletic injury prevention and health monitoring. Discover Artificial Intelligence, 5(1), 31. https://doi.org/10.1007/s44163-025-00254-4

Gu, C., Lin, W., He, X., Zhang, L., & Zhang, M. (2023). IMU-based motion capture system for rehabilitation applications: A systematic review. Biomimetic Intelligence and Robotics, 3(2), 100097. https://doi.org/10.1016/j.birob.2023.100097

Guo, X., Liu, P., & Li, T. (2024, 20-22 Sept. 2024). Sports Injury Prediction and Prevention: Analysis Methods Based on Big Data and Artificial Intelligence. Paper presented at the 2024 5th International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE). https://doi.org/10.1109/ICBASE63199.2024.10762288

Hannink, J., Kautz, T., Pasluosta, C. F., Gasmann, K. G., Klucken, J., & Eskofier, B. M. (2017). Sensor-Based Gait Parameter Extraction With Deep Convolutional Neural Networks. IEEE J Biomed Health Inform, 21(1), 85-93. https://doi.org/10.1109/JBHI.2016.2636456

Hliš, T., Fister, I., & Fister Jr, I. (2024). Digital twins in sport: Concepts, taxonomies, challenges and practical potentials. Expert Systems with Applications, 258, 125104. https://doi.org/10.1016/j.eswa.2024.125104

Huang, Y., Huang, S., Wang, Y., Li, Y., Gui, Y., & Huang, C. (2022). A novel lower extremity non-contact injury risk prediction model based on multimodal fusion and interpretable machine learning. Front Physiol, 13, 937546. https://doi.org/10.3389/fphys.2022.937546

Hudson, D., Hartigh, R. J. R. D., Meerhoff, L. R. A., & Atzmueller, M. (2023, 1-4 Dec. 2023). Explainable Multi-Modal and Local Approaches to Modelling Injuries in Sports Data. Paper presented at the 2023 IEEE International Conference on Data Mining Workshops (ICDMW). https://doi.org/10.1109/ICDMW60847.2023.00126

Jauhiainen, S., Kauppi, J. P., Leppänen, M., Pasanen, K., Parkkari, J., Vasankari, T., . . . Äyrämö, S. (2021). New Machine Learning Approach for Detection of Injury Risk Factors in Young Team Sport Athletes. Int J Sports Med, 42(2), 175-182. https://doi.org/10.1055/a-1231-5304

Jubair, H., Chowdhury, R. T., Akter, F., Sami, I. S., Nawal, N., Arshi, S. T., & Shil, P. J. M. L. (2025). Machine Learning for Real-Time Exercise Correction and Injury Prevention: A Systematic Review. 13, 1. https://doi.org/10.22541/au.174466167.73334339/v1

Kandala, M., V, G. S., V, N., & Palaniswamy, S. (2024, 6-7 Dec. 2024). AI-Based Posture Correction, Real-Time Exercise Tracking and Feedback using Pose Estimation Technique. Paper presented at the 2024 International Conference on Communication, Control, and Intelligent Systems (CCIS).

Kaur, S., Singla, J., Nkenyereye, L., Jha, S., Prashar, D., Joshi, G. P., . . . Islam, S. M. R. (2020). Medical Diagnostic Systems Using Artificial Intelligence (AI) Algorithms: Principles and Perspectives. IEEE Access, 8, 228049-228069. https://doi.org/10.1109/ACCESS.2020.3042273

Khalid, U. B., Naeem, M., Stasolla, F., Syed, M. H., Abbas, M., & Coronato, A. (2024). Impact of AI-Powered Solutions in Rehabilitation Process: Recent Improvements and Future Trends. Int J Gen Med, 17, 943-969. https://doi.org/10.2147/IJGM.S453903

Kokkotis, C., Moustakidis, S., Tsatalas, T., Ntakolia, C., Chalatsis, G., Konstadakos, S., . . . Tsaopoulos, D. (2022). Leveraging explainable machine learning to identify gait biomechanical parameters associated with anterior cruciate ligament injury. Scientific Reports, 12(1), 6647. https://doi.org/10.1038/s41598-022-10666-2

LaBoone, P. A., & Marques, O. (2024). Overview of the future impact of wearables and artificial intelligence in healthcare workflows and technology. International Journal of Information Management Data Insights, 4(2), 100294. https://doi.org/10.1016/j.jjimei.2024.100294

Lanotte, F., O'Brien, M. K., & Jayaraman, A. (2023). AI in Rehabilitation Medicine: Opportunities and Challenges. Ann Rehabil Med, 47(6), 444-458. https://doi.org/10.5535/arm.23131

Leong, W. Y., Leong, Y. Z., & Leong, W. S. (2024, 14-16 June 2024). Sports Medicine Protocols: A Comprehensive Guide to Injury Management and Rehabilitation. Paper presented at the 2024 IEEE 6th Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS). https://doi.org/10.1109/ECBIOS61468.2024.10885452

Li, A., & Huang, W. (2024). A comprehensive survey of artificial intelligence and cloud computing applications in the sports industry. Wireless Networks, 30(8), 6973-6984. https://doi.org/10.1007/s11276-023-03567-3

Li, W. (2024). A Big Data Approach to Forecast Injuries in Professional Sports Using Support Vector Machine. Mobile Networks and Applications. https://doi.org/10.1007/s11036-024-02377-x

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Paper presented at the Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, California, USA.

Mishra, N., Habal, B. G. M., Garcia, P. S., & Garcia, M. B. (2024). Harnessing an AI-Driven Analytics Model to Optimize Training and Treatment in Physical Education for Sports Injury Prevention. Paper presented at the Proceedings of the 2024 8th International Conference on Education and Multimedia Technology, Tokyo, Japan. https://doi.org/10.1145/3678726.3678740

Musat, C. L., Mereuta, C., Nechita, A., Tutunaru, D., Voipan, A. E., Voipan, D., . . . Nechita, L. C. (2024). Diagnostic Applications of AI in Sports: A Comprehensive Review of Injury Risk Prediction Methods. Diagnostics (Basel), 14(22). https://doi.org/10.3390/diagnostics14222516

Nechita, L. C., Tutunaru, D., Nechita, A., Voipan, A. E., Voipan, D., Tupu, A. E., & Musat, C. L. (2025). AI and Smart Devices in Cardio-Oncology: Advancements in Cardiotoxicity Prediction and Cardiovascular Monitoring. Diagnostics (Basel), 15(6). https://doi.org/10.3390/diagnostics15060787

Nicora, G., Pe, S., Santangelo, G., Billeci, L., Aprile, I. G., Germanotta, M., . . . Quaglini, S. (2025). Systematic review of AI/ML applications in multi-domain robotic rehabilitation: trends, gaps, and future directions. Journal of NeuroEngineering and Rehabilitation, 22(1), 79. https://doi.org/10.1186/s12984-025-01605-z

Oettl, F. C., Zsidai, B., Oeding, J. F., Hirschmann, M. T., Feldt, R., Tischer, T., & Samuelsson, K. (2025). Beyond traditional orthopaedic data analysis: AI, multimodal models and continuous monitoring. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1002/ksa.12657

Parvathy, P. R., K. V, S., Sreedevi, B., Jayaprakash, S., & Murugan, S. (2025, 4-6 March 2025). AI and Cloud for Real-Time Evaluation of Sports Injury Severity and Recovery. Paper presented at the 2025 International Conference on Visual Analytics and Data Visualization (ICVADV).

Picerno, P. (2017). 25 years of lower limb joint kinematics by using inertial and magnetic sensors: A review of methodological approaches. Gait Posture, 51, 239-246. https://doi.org/10.1016/j.gaitpost.2016.11.008

Poongodi, J., Kavitha, K., Sathish, S., & Lakshmana Kumar, R. (2025). Hybrid AI-Driven Bio-Inspired Wearable Sensors With Aquasense AI Technology for Multimodal Health Monitoring and Rehabilitation in Dynamic Environments. 36(3), e70081. https://doi.org/10.1002/ett.70081

Ramkumar, P. N., Luu, B. C., Haeberle, H. S., Karnuta, J. M., Nwachukwu, B. U., & Williams, R. J. (2022). Sports Medicine and Artificial Intelligence: A Primer. Am J Sports Med, 50(4), 1166-1174. https://doi.org/10.1177/03635465211008648

Rasa, A. R. (2024). Artificial Intelligence and Its Revolutionary Role in Physical and Mental Rehabilitation: A Review of Recent Advancements. Biomed Res Int, 2024, 9554590. https://doi.org/10.1155/bmri/9554590

Reis, F. J. J., Alaiti, R. K., Vallio, C. S., & Hespanhol, L. (2024). Artificial intelligence and Machine Learning approaches in sports: Concepts, applications, challenges, and future perspectives. Braz J Phys Ther, 28(3), 101083. https://doi.org/10.1016/j.bjpt.2024.101083

Retzepis, N.-O., Avloniti, A., Kokkotis, C., Protopapa, M., Stampoulis, T., Gkachtsou, A., . . . Chatzinikolaou, A. (2024). Identifying Key Factors for Predicting the Age at Peak Height Velocity in Preadolescent Team Sports Athletes Using Explainable Machine Learning. 12(11), 287. https://doi.org/10.3390/sports12110287

Rossi, A., Pappalardo, L., & Cintia, P. (2022). A Narrative Review for a Machine Learning Application in Sports: An Example Based on Injury Forecasting in Soccer. 10(1), 5. https://doi.org/10.3390/sports10010005

S. C, P., B. J. J, I., A. M, B., V, R., & A. S, J. (2024, 18-20 Nov. 2024). Reinforcement Learning based Adaptive Healthcare Decision Support Systems using Time Series Forecasting. Paper presented at the 2024 5th International Conference on Data Intelligence and Cognitive Informatics (ICDICI).

Sabry, F., Eltaras, T., Labda, W., Alzoubi, K., & Malluhi, Q. (2022). Machine Learning for Healthcare Wearable Devices: The Big Picture. J Healthc Eng, 2022, 4653923. https://doi.org/10.1155/2022/4653923

Sadr, M. M., Khani, M., & Tootkaleh, S. M. (2025). Predicting athletic injuries with deep Learning: Evaluating CNNs and RNNs for enhanced performance and Safety. Biomedical Signal Processing and Control, 105, 107692. https://doi.org/10.1016/j.bspc.2025.107692

Sardari, S., Sharifzadeh, S., Daneshkhah, A., Nakisa, B., Loke, S. W., Palade, V., & Duncan, M. J. (2023). Artificial Intelligence for skeleton-based physical rehabilitation action evaluation: A systematic review. Comput Biol Med, 158, 106835. https://doi.org/10.1016/j.compbiomed.2023.106835

Seçkin, A. Ç., Ateş, B., & Seçkin, M. (2023). Review on Wearable Technology in Sports: Concepts, Challenges and Opportunities. 13(18), 10399. https://doi.org/10.3390/app131810399

Speiser, J. L., Callahan, K. E., Houston, D. K., Fanning, J., Gill, T. M., Guralnik, J. M., . . . Miller, M. E. (2021). Machine Learning in Aging: An Example of Developing Prediction Models for Serious Fall Injury in Older Adults. J Gerontol A Biol Sci Med Sci, 76(4), 647-654. https://doi.org/10.1093/gerona/glaa138

Sukumar, D., Zhang, J., Tao, X., Wang, X., & Zhang, W. (2020, 6-9 Oct. 2020). Predicting Workplace Injuries Using Machine Learning Algorithms. Paper presented at the 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA). https://doi.org/10.1109/DSAA49011.2020.00104

Sumner, J., Lim, H. W., Chong, L. S., Bundele, A., Mukhopadhyay, A., & Kayambu, G. (2023). Artificial intelligence in physical rehabilitation: A systematic review. Artificial Intelligence in Medicine, 146, 102693. https://doi.org/10.1016/j.artmed.2023.102693

Tedesco, S., Scheurer, S., Brown, K. N., Hennessy, L., & Flynn, B. O. (2022, 6-8 July 2022). A Survey on the Use of Artificial Intelligence for Injury Prediction in Sports. Paper presented at the 2022 IEEE International Workshop on Sport, Technology and Research (STAR). https://doi.org/10.1109/STAR53492.2022.9859939

Van Eetvelde, H., Mendonça, L. D., Ley, C., Seil, R., & Tischer, T. (2021). Machine learning methods in sport injury prediction and prevention: a systematic review. J Exp Orthop, 8(1), 27. https://doi.org/10.1186/s40634-021-00346-x

Vijayan, V., Connolly, J. P., Condell, J., McKelvey, N., & Gardiner, P. (2021). Review of Wearable Devices and Data Collection Considerations for Connected Health. Sensors (Basel), 21(16). https://doi.org/10.3390/s21165589

Wani, N. A., Kumar, R., Mamta, Bedi, J., & Rida, I. (2024). Explainable AI-driven IoMT fusion: Unravelling techniques, opportunities, and challenges with Explainable AI in healthcare. Information Fusion, 110, 102472. https://doi.org/10.1016/j.inffus.2024.102472

Yadav, A., & Yadav, K. (2025). Transforming healthcare and fitness with AI powered next-generation smart clothing. Discover Electrochemistry, 2(1), 2. https://doi.org/10.1007/s44373-025-00015-z

Yung, K. K., Ardern, C. L., Serpiello, F. R., & Robertson, S. (2022). Characteristics of Complex Systems in Sports Injury Rehabilitation: Examples and Implications for Practice. Sports Med Open, 8(1), 24. https://doi.org/10.1186/s40798-021-00405-8

Yung, K. K. Y., Wu, P. P. Y., Aus der Fünten, K., Hecksteden, A., & Meyer, T. (2025). Using a Bayesian network to classify time to return to sport based on football injury epidemiological data. PLoS One, 20(3), e0314184. https://doi.org/10.1371/journal.pone.0314184

Zhang, S., Li, M., Shao, J., & Wang, X. (2024). Using Interpretable Machine Learning to Predict Injury Risk Among Collegiate Male Basketball Players: 1382. 56(10S), 461. https://doi.org/10.1249/01.mss.0001056532.61707.36

Similar Articles

You may also start an advanced similarity search for this article.