The placebo effect does not enhance sprinting or jumping performance in trained athletes
Main Article Content
Abstract
This study aimed to analyse the placebo effect associated with caffeine on the performance of sprinters in a 60-meter sprint test and a standing triple jump. Methods: Thirteen trained sprinters (7 men, 6 women) volunteered to complete the experimental procedures (22.8 ± 4.7 years, 64.7 ± 6.5 kg and 173.9 ± 6.5 cm). A repeated, randomized, and counterbalanced experimental design was used to compare the effects of the ingestion of a placebo reported as caffeine (placebo) and a control situation where no substance was ingested (control). In both conditions, they completed a standing triple jump, and a 60-meter sprint test and filled out a questionnaire about potential side effects. Results: Performance was similar in placebo and control conditions in the 60-meter sprint test (7.52 ± 0.46 vs. 7.55 ± 0.43 s; p = .49; small d = 0.20) and the standing triple jump (7.28 ± 0.84 vs. 7.28 ± 0.87 m; p = .95; trivial d = 0.02). The most frequent side effects derived from deceptive caffeine ingestion were increased activeness (53.8%), nervousness (23.1%) and insomnia (15.4%). Conclusion: Deceptive caffeine ingestion did not alter performance in sprint and triple jump performance in trained athletes, while some minor side effects appeared. Individual responses to placebo ingestion should be carefully considered before making recommendations for sprint athletes.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Each author warrants that his or her submission to the Work is original and that he or she has full power to enter into this agreement. Neither this Work nor a similar work has been published elsewhere in any language nor shall be submitted for publication elsewhere while under consideration by Journal of Human Sport and Exercise (JHSE). Each author also accepts that the JHSE will not be held legally responsible for any claims of compensation.
Authors wishing to include figures or text passages that have already been published elsewhere are required to obtain permission from the copyright holder(s) and to include evidence that such permission has been granted when submitting their papers. Any material received without such evidence will be assumed to originate from the authors.
Please include at the end of the acknowledgements a declaration that the experiments comply with the current laws of the country in which they were performed. The editors reserve the right to reject manuscripts that do not comply with the abovementioned requirements. The author(s) will be held responsible for false statements or failure to fulfill the above-mentioned requirements.
This title is licensed under a Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0).
You are free to:
Share — copy and redistribute the material in any medium or format.
Adapt — remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
-
NonCommercial — You may not use the material for commercial purposes.
-
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
How to Cite
Funding data
-
Ministerio de Ciencia, Innovación y Universidades
Grant numbers PID2020-119162GB-I00/AEI/10.13039/501100011033
References
Aguilar-Navarro, M., Muñoz, G., Salinero, J. J., Muñoz-Guerra, J., Fernández-Álvarez, M., Plata, M. D. M., & Del Coso, J. (2019). Urine Caffeine Concentration in Doping Control Samples from 2004 to 2015. Nutrients, 11(2). https://doi.org/10.3390/nu11020286
Baltazar-Martins, J. G., Brito De Souza, D., Aguilar, M., Grgic, J., & Del Coso, J. (2020). Infographic. The road to the ergogenic effect of caffeine on exercise performance. Br J Sports Med, 54(10), 618-619. https://doi.org/10.1136/bjsports-2019-101018
Beedie, C., Benedetti, F., Barbiani, D., Camerone, E., Cohen, E., Coleman, D., Davis, A., Elsworth‐Edelsten, C., Flowers, E., Foad, A., Harvey, S., Hettinga, F., Hurst, P., Lane, A., Lindheimer, J., Raglin, J., Roelands, B., Schiphof‐Godart, L., & Szabo, A. (2018). Consensus statement on placebo effects in sports and exercise: The need for conceptual clarity, methodological rigour, and the elucidation of neurobiological mechanisms. Eur J Sport Sci, 18(10), 1383-1389. https://doi.org/10.1080/17461391.2018.1496144
Beedie, C. J., Coleman, D. A., Foad, A. J., Beedie, C. J., Coleman, D. A., & Foad, A. J. (2007). Positive and Negative Placebo Effects Resulting from the Deceptive Administration of an Ergogenic Aid. Int J Sport Nut Exerc Metab, 17(3). https://doi.org/10.1123/ijsnem.17.3.259
Beedie, C. J., & Foad, A. J. (2009). The Placebo Effect in Sports Performance. Sports Med, 39(4), 313-329. https://doi.org/10.2165/00007256-200939040-00004
Beedie, C. J., Stuart, E. M., Coleman, D. A., & Foad, A. J. (2006). Placebo effects of caffeine on cycling performance. Med Sci Sports Exerc, 38(12), 2159-2164. https://doi.org/10.1249/01.mss.0000233805.56315.a9
Burke, L. M., Castell, L. M., Casa, D. J., Close, G. L., Costa, R. J. S., Desbrow, B., Halson, S. L., Lis, D. M., Melin, A. K., Peeling, P., Saunders, P. U., Slater, G. J., Sygo, J., Witard, O. C., Bermon, S., & Stellingwerff, T. (2019). International Association of Athletics Federations Consensus Statement 2019: Nutrition for Athletics. Inter J Sport Nut Exerc Metab, 29(2), 73-84. https://doi.org/10.1123/ijsnem.2019-0065
Campelo, D., Koch, A. J., & Machado, M. (2023). Caffeine, lactic acid, or nothing: What effect does expectation have on men's performance and perceived exertion during an upper body muscular endurance task? Int J Health Sci, 17(6), 39-42.
Chhabra, B., & Szabo, A. (2024). Placebo and Nocebo Effects on Sports and Exercise Performance: A Systematic Literature Review Update. Nutrients, 16(13), 1975. https://doi.org/10.3390/nu16131975
Chtourou, H., & Souissi, N. (2012). The effect of training at a specific time of day: a review. J Strength Cond Res, 26(7), 1984-2005. https://doi.org/10.1519/JSC.0b013e31825770a7
Clark, V. R., Hopkins, W. G., Hawley, J. A., & Burke, L. M. (2000). Placebo effect of carbohydrate feedings during a 40-km cycling time trial. Med Sci Sports Exerc, 32(9), 1642-1647. https://doi.org/10.1097/00005768-200009000-00019
Colloca, L., & Barsky, A. J. (2020). Placebo and Nocebo Effects. N Eng J Med, 382, 554-561. https://doi.org/10.1056/NEJMra1907805
Costa, G. D. C. T., Galvão, L., Bottaro, M., Mota, J. F., Pimentel, G. D., & Gentil, P. (2019). Effects of placebo on bench throw performance of Paralympic weightlifting athletes: a pilot study. J Int Soc Sports Nut, 16(1). https://doi.org/10.1186/s12970-019-0276-9
De La Vega, R., Alberti, S., Ruíz-Barquín, R., Soós, I., & Szabo, A. (2017). Induced beliefs about a fictive energy drink influences 200-m sprint performance. Eur J Sport Sci, 17(8), 1084-1089. https://doi.org/10.1080/17461391.2017.1339735
Duncan, M. J. (2010). Placebo effects of caffeine on anaerobic performance in moderately trained adults. Serbian journal of sports sciences, 4(3), 99-106. Serbian J Sports Sci.
Duncan, M. J., Lyons, M., & Hankey, J. (2009). Placebo effects of caffeine on short-term resistance exercise to failure. Int J Sports Physiol Perform, 4(2), 244-253. https://doi.org/10.1123/ijspp.4.2.244
Filip-Stachnik, A., Krzysztofik, M., Kaszuba, M., Leońska-Duniec, A., Czarny, W., Del Coso, J., & Wilk, M. (2020). Placebo Effect of Caffeine on Maximal Strength and Strength Endurance in Healthy Recreationally Trained Women Habituated to Caffeine. Nutrients, 12(12), 3813. https://doi.org/10.3390/nu12123813
Frisaldi, E., Shaibani, A., & Benedetti, F. (2020). Understanding the mechanisms of placebo and nocebo effects. Swiss Med Weekly, 150(3536), w20340. https://doi.org/10.4414/smw.2020.20340
Frisaldi, E., Shaibani, A., Benedetti, F., & Pagnini, F. (2023). Placebo and nocebo effects and mechanisms associated with pharmacological interventions: an umbrella review. BMJ Open, 13(10), e077243. https://doi.org/10.1136/bmjopen-2023-077243
Giraldez-Costas, V., Del Coso, J., Manas, A., & Salinero, J. J. (2023). The Long Way to Establish the Ergogenic Effect of Caffeine on Strength Performance: An Overview Review. Nutrients, 15(5). https://doi.org/10.3390/nu15051178
Grgic, J., & Mikulic, P. (2021). Effects of caffeine on rate of force development: A meta-analysis. Scan J Med Sci Sports. https://doi.org/10.1111/sms.14109
Grgic, J., Trexler, E. T., Lazinica, B., & Pedisic, Z. (2018). Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis. J Int Soc Sports Nut, 15(1). https://doi.org/10.1186/s12970-018-0216-0
Grgic, J., & Varovic, D. (2022). Ergogenic Effects of Caffeine on Ballistic (Throwing) Performance: A Meta-Analytical Review. Nutrients, 14(19), 4155. https://doi.org/10.3390/nu14194155
Guest, N. S., VanDusseldorp, T. A., Nelson, M. T., Grgic, J., Schoenfeld, B. J., Jenkins, N. D. M., Arent, S. M., Antonio, J., Stout, J. R., Trexler, E. T., Smith-Ryan, A. E., Goldstein, E. R., Kalman, D. S., & Campbell, B. I. (2021). International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nut, 18(1). https://doi.org/10.1186/s12970-020-00383-4
Hopkins, W. G. (2016). A Scale of Magnitudes for Effect Statistics.
Hurst, P., Foad, A., Coleman, D., & Beedie, C. J. (2017). Athletes Intending to Use Sports Supplements Are More Likely to Respond to a Placebo. Med Sci Sports Exerc, 49(9), 1877-1883. https://doi.org/10.1249/MSS.0000000000001297
Hurst, P., Schipof-Godart, L., Hettinga, F., Roelands, B., & Beedie, C. J. (2019). Improved 1000-m Running Performance and Pacing Strategy With Caffeine and Placebo: A Balanced Placebo Design Study. Int J Sports Physiol Perform, 15(4), 483-488. https://doi.org/10.1123/ijspp.2019-0230
Hurst, P., Schipof-Godart, L., Szabo, A., Raglin, J., Hettinga, F., Roelands, B., Lane, A., Foad, A., Coleman, D., & Beedie, C. J. (2020). The Placebo and Nocebo effect on sports performance: A systematic review. Eur J Sport Sci, 20(3), 279-292. https://doi.org/10.1080/17461391.2019.1655098
Kalasountas, V., Reed, J., & Fitzpatrick, J. (2007). The Effect of Placebo-Induced Changes in Expectancies on Maximal Force Production in College Students. J App Sport Psychol, 19(1), 116-124. https://doi.org/10.1080/10413200601123736
Lara, B., Ruiz-Vicente, D., Areces, F., Abián-Vicén, J., Salinero, J. J., Gonzalez-Millán, C., Gallo-Salazar, C., & Del Coso, J. (2015). Acute consumption of a caffeinated energy drink enhances aspects of performance in sprint swimmers. Br J Nut, 114(6), 908-914. https://doi.org/10.1017/S0007114515002573
Macedo, A., Farré, M., & Baños, J. E. (2003). Placebo effect and placebos: what are we talking about? Some conceptual and historical considerations. Eur J Clin Pharmacol, 59(4), 337-342. https://doi.org/10.1007/s00228-003-0612-4
Matsumura, T., Tomoo, K., Sugimoto, T., Tsukamoto, H., Shinohara, Y., Otsuka, M., & Hashimoto, T. (2023). Acute Effect of Caffeine Supplementation on 100-m Sprint Running Performance: A Field Test. Med Sci Sports Exerc, 55(3). https://doi.org/10.1249/MSS.0000000000003057
Maughan, R. J., Burke, L. M., Dvorak, J., Larson-Meyer, D. E., Peeling, P., Phillips, S. M., Rawson, E. S., Walsh, N. P., Garthe, I., Geyer, H., Meeusen, R., Van Loon, L. J. C., Shirreffs, S. M., Spriet, L. L., Stuart, M., Vernec, A., Currell, K., Ali, V. M., Budgett, R. G., . . . Engebretsen, L. (2018). IOC consensus statement: dietary supplements and the high-performance athlete. Br J Sports Med, 52(7), 439-455. https://doi.org/10.1136/bjsports-2018-099027
McClung, M., & Collins, D. (2007). "Because I know it will!": placebo effects of an ergogenic aid on athletic performance. J Sport Exerc Psychol, 29(3), 382-394. https://doi.org/10.1123/jsep.29.3.382
McKay, A. K. A., Stellingwerff, T., Smith, E. S., Martin, D. T., Mujika, I., Goosey-Tolfrey, V. L., Sheppard, J., & Burke, L. M. (2022). Defining Training and Performance Caliber: A Participant Classification Framework. Inter J Sports Physiol Perf, 17(2), 317-331. https://doi.org/10.1123/ijspp.2021-0451
Murray, E. J. (2021). Editorial: Demystifying the Placebo Effect. Am J Epidemiol, 190(1), 2-9. https://doi.org/10.1093/aje/kwaa162
Ortiz-Sánchez, D., Bravo-Sánchez, A., Ramírez-delaCruz, M., Abián, P., Abián-Vicén, J., Ortiz-Sánchez, D., Bravo-Sánchez, A., Ramírez-delaCruz, M., Abián, P., & Abián-Vicén, J. (2024). Placebo Effect of Caffeine on Physiological Parameters and Physical Performance. Nutrients, 16(10), 1405. https://doi.org/10.3390/nu16101405
Pallarés, J. G., Fernández-Elías, V. E., Ortega, J. F., Muñoz, G., Muñoz-Guerra, J., & Mora-Rodríguez, R. (2013). Neuromuscular responses to incremental caffeine doses: performance and side effects. Med Sci Sports Exerc, 45(11), 2184-2192. https://doi.org/10.1249/MSS.0b013e31829a6672
Peeling, P., Binnie, M. J., Goods, P. S. R., Sim, M., & Burke, L. M. (2018). Evidence-Based Supplements for the Enhancement of Athletic Performance. Inter J Sport Nut Exerc Metab, 28(2), 178-187. https://doi.org/10.1123/ijsnem.2017-0343
Pollo, A., Carlino, E., & Benedetti, F. (2011). Placebo mechanisms across different conditions: from the clinical setting to physical performance. Philos Trans R Soc, 366(1572), 1790-1798. https://doi.org/10.1098/rstb.2010.0381
Rohloff, G., Souza, D. B., Ruiz-Moreno, C., Del Coso, J., & Polito, M. D. (2022). Stimulus Expectancy and Stimulus Response of Caffeine on 4-km Running Performance: A Randomized, Double-blind, Placebo-controlled and Crossover Study. Int J Exerc Sci, 15(2), 645-654. https://doi.org/10.70252/HUWD8703
Salinero, J. J., Lara, B., Abian-Vicen, J., Gonzalez-Millán, C., Areces, F., Gallo-Salazar, C., Ruiz-Vicente, D., & Del Coso, J. (2014). The use of energy drinks in sport: Perceived ergogenicity and side effects in male and female athletes. Br J Nut, 112(9), 1494-1502. https://doi.org/10.1017/S0007114514002189
Salinero, J. J., Lara, B., & Del Coso, J. (2019). Effects of acute ingestion of caffeine on team sports performance: a systematic review and meta-analysis. Res Sports Med, 27(2), 238-256. https://doi.org/10.1080/15438627.2018.1552146
Szabo, A. (2023). Placebo doping in sport: overview and ethical considerations. J Sport Exerc Sci, 7(1), 60-67. https://doi.org/10.36905/jses.2023.01.08
Tallis, J., Muhammad, B., Islam, M., & Duncan, M. J. (2016). Placebo effects of caffeine on maximal voluntary concentric force of the knee flexors and extensors. Muscle Nerve, 54(3), 479-486. https://doi.org/10.1002/mus.25060
Tavel, M. E. (2014). The placebo effect: the good, the bad, and the ugly. Am J Med, 127(6), 484-488. https://doi.org/10.1016/j.amjmed.2014.02.002
Tomazin, K., Morin, J. B., Strojnik, V., Podpecan, A., & Millet, G. Y. (2012). Fatigue after short (100-m), medium (200-m) and long (400-m) treadmill sprints. Eur J Appl Physiol, 112(3), 1027-1036. https://doi.org/10.1007/s00421-011-2058-1
Valero, F., González-Mohíno, F., & Salinero, J. J. (2024). Belief That Caffeine Ingestion Improves Performance in a 6-Minute Time Trial Test without Affecting Pacing Strategy. Nutrients, 16(2), 327. https://doi.org/10.3390/nu16020327
Yeadon, M. R., Kato, T., & Kerwin, D. G. (1999). Measuring running speed using photocells. J Sports Sci, 17(3), 249-257. https://doi.org/10.1080/026404199366154